Monitor, Wizard, Perception

GroWeather, Energy, & Health

WeatherLink Protocol 02-11-98

Rev 3.3

Table of Contents:

� TOC \o \n �I. Introduction

II. Definitions

III. Pseudo code description of WeatherLink command processing loop.

IV. Code illustration of the Communication functions used in the examples.

V. Link Types and Revision Levels

VI. Command Description

VII. Command Summary

VIII. Illustrated Examples

A. Reading Calibrated Data

1. Temperature CAL

2. Humidity CAL

3. Barometer

4. Rain

5. Wind Speed

6. Rain Rate

7. UV MED's

B. Using the LOOP command

C. Using MDMP command

D. Invalid Data values

E. Calculated Data values

1. Wind Chill

2. Dew Point

3. Temperature-Humidity Index

4. THSWI

5. Wind Run

6. Degree-Days

7. Solar Energy

8. UV Dose

9. Rain Rate

F. CRC Checking

G. Reading Hi/Low Times and Dates

IX. Memory addresses.

A. Monitor, Wizard, and Perception Station

B. Monitor, Wizard, and Perception Link

C. GroWeather Station

D. GroWeather Link

E. Energy Station

F. Energy Link

G. Health Station

H. Health Link

�Appendices (Contained in "appendix.txt")

A Bar/Power Bit definitions

B Control Module communication status codes (AOM Status)

C Model Numbers

D Power Voltage Codes

E THSWI Latitude Codes

F Wind Direction Sector Codes

G1 GroWeather Alarm Bits

G2 ET Status bits

G3 Leaf Wetness Data/Status byte in the LOOP packet.

E1 Energy Alarm Bits

H1 Health Alarm Bits

Introduction

 This document is a technical description of the software interface to both the Standard WeatherLink, which can connect to the Monitor, Wizard, and Perception models, and the GroWeather WeatherLink, the Energy WeatherLink, and the Health WeatherLink. The WeatherLink interprets commands sent by a PC over an RS232C serial link (8 bits, 1 stop bit, no parity). The commands are a combination of ASCII and binary data. The command structure and format are almost identical for the 4 kinds of WeatherLink, but the available data and their locations are different.

 The diagram below illustrates the relationship between the PC, WeatherLink, and Weather Station. The sensor image, archive image, and the archive memory belong to the WeatherLink. As shown in the diagram the PC sends commands and receives data from the WeatherLink. The WeatherLink sends commands and receives data from the Weather Station. Data is contained in both the WeatherLink and the Weather Station. You will notice you can read data from the WeatherLink faster than the Weather Station. Therefore, if the data exists in the WeatherLink and is being updated fast enough for your purposes, read it from the WeatherLink. Study the "Command Processing Loop" carefully to understand what is in the WeatherLink and when it is updated. "RRD" commands read from the WeatherLink. "WRD" commands read from the Weather Station. The addresses of the data available in the WeatherLink and the Weather Station are given in section � REF _Ref408391804 \n �IX�.

	cmds		cmds	(Monitor Station)

PC	->	Weather	-> Weather Station	(Wizard Station)

		Link		(Perception Station)

	data		data	(GroWeather)

	<-	.	<-	(Energy Station)

		.		(Health Station)

		.

		sensor image

		archive image

		archive memory

 The Appendices, in the separate file "appendix.txt", contain descriptions of coded numerical values and Bit definitions.

 Please note Davis Instruments is not responsible for any damages your use of this information may cause. Furthermore, we reserve the right to modify our designs without notice.

Definitions

station processor memory - 256 bytes of memory directly accessible by the station processor, organized into 2 banks of 256 nibbles.

link processor memory - 256 bytes of memory directly accessible by the link processor, organized into 2 banks of 256 nibbles.

archive memory - 32K of memory where weather data is stored before downloading to PC.

sensor image - Memory containing the latest data from the weather station. Part of the link processor memory

archive image - Memory where archive entries are assembled before being written to the archive memory. Part of the link processor memory

 Pseudo code description of WeatherLink command processing loop.

 All references to Inside temperature apply to Soil temperature on the GroWeather station.

 Items marked (G) are only applicable to the GroWeather station

 (E) are only applicable to the Energy Station

 (H) are only applicable to the Health Station

 (O) are only applicable to the Monitor, Wizard, & Perception

 (N) are only applicable to the GroWeather, Energy, & Health

		// Initialize the Link chip memory

		Set archive interval to be 30 minutes.

		Set sample interval to be 20 seconds.

		Test archive memory.

		If (memory test passes)

				Do a beep on the weather station.

	/*

Wind speed and wind direction are read and stored in the sensor image each time around the loop. Temperature is read once for every ten wind speed readings. Humidity, Barometer, and Rain are updated every time the sensor image is updated.

	*/

		while (1) // beginning of command processing loop

				GetWindSpeed ();

				Test for new Gust Value;

				GetWindDirection ();

		For every 10 wind speed reads {

			read Inside and Outside temperature;

			Read Rain Rate (N)

			read Solar Rad (N)

			read UV Intensity (H)

			read Alarm and Control-Module communication status (N)

			Check current Outside Temp for new Hi/Low in this period

			 And record in archive image.

			Check for new Hi Rain Rate (N)

			Check for new Hi Solar Rad (H)

			Check for new Hi UV Intensity (H)

			}

				if (in loop mode)

					Transmit copy of sensor image.

				if (time to sample sensor image) Sample sensor image:

			Add current data values for variables that are averaged:

				Inside & Outside Temperature

				Wind Speed

				Solar Radiation (N)

				UV Intensity (H)

			If wind speed is > wind threshold (0), then add one to the

			 direction bin corresponding to the current wind direction

			Read other values not read in above: (GetRBH)

				read Rain

				read Barometer

				read outside Humidity

				read inside Humidity (H) (O)

				read Wind Run (G) (E)

				read Total ET (G)

				read Total Growing Degree-Days (G)

				read Total Heating, Chill, Cooling, & THI Degree-Days (E)

				read Total Solar Energy (G) (E)

				read Bar and Power status bits (N)

				read Leaf Wetness value (G)

				read Rain Cal (N)

		Every 18 seconds

				collect data from the ET Sensors to calculate hourly ET (G)

				if (Time to check archive clock) // Every 16 seconds.

				{

				Call GetRBH as above (N)

				if (it is time to calculate ET) (G)

					calculate ET and store in archive Image (G)

				if (lastArchiveTime - currentTime >= archiveInterval)

					{

					// Make sure the sensor image is up to date.

					Call GetRBH as above (O)

					// Fill in the archive image before archiving

					// Hi and Low Outside temps are already set (see above)

					// The following reads are stored in the sensor image.

					Read current barometric pressure.

					Read current outside humidity.

					Read the current Leaf Wetness Value (G)

					Read current inside humidity. (H) (O)

				// The following are incremental values derived from the

					difference between the current value and the previous

					value

				Calculate rain in period.

				Calculate Wind Run in Period (G) (E)

				Calculate Growing Degree Days in period (G)

				Calculate Heating Degree Days in period (E)

				Calculate Wind Chill Degree Days in period (E)

				Calculate Cooling Degree Days in period (E)

				Calculate Temp-Hum-Index Degree Days in period (E)

				Calculate Solar energy in Period (G) (E)

				Calculate UV Dose in period (H)

					// The following are average values are derived by

						dividing an accumulator by the number of samples taken

					Calculate average Inside temperature for period.

					Calculate average Outside temperature for period.

					Calculate average wind speed for period.

					Calculate Average Solar Rad for period. (N)

					Calculate Average UV Intensity (H)

				Calculate dominant wind direction for period

				Finally, read the primary power voltage code from the station (G) (E)

					Write data to archive memory.

				Update last archive time:

	(O) Set the "last time" to the current station time

	(N) set the "last time" so that the next archive happens on the hour

				Clear Hi/Low entries in Archive image

				Clear Accumulators and sample count

				Set the "Previous" registers to the current values

				Reset ET data to FFFF (G)

						} // create archive record

					} // 16 second polling

				if (A command is available)

					Process the command.

				} // End while (1)...

Code illustration of the Communication functions used in the examples.

 The functions "put_serial_char()", "put_serial_string()", "send_unsigned()", "get_serial_char()" "get_acknowledge()", "fill_buffer()", and "fill_crc_buffer()" are used in the examples in the next sections to send commands and data to the WeatherLink. You must provide these functions. The illustrations given here are for reference.

 All of the example code included with this programmer's reference disk assumes that the "int" data type is a 16 bit (2 byte) signed number. On some machines you may be required to use the "short int" data type. In most cases, the "char" data type is explicitly stated as being unsigned. In a few places (i.e. Hum Cal on GroWeather, etc.) a one byte number needs to be treated as a signed value.

 "receive_buffer" is an external (global) array of unsigned char that is at least 32K in length (the size of the SRAM).

/* +---+ Output a character to current serial port.

	*/

	int put_serial_char (unsigned char c)

	{

			// write character c to the current serial port

	}

/* +--+

Output a string to current serial port.

	*/

	int put_serial_string (char *s)

	{

			int i;

			for (i = 0; s [i] != '\0'; i++)

					put_serial_char (s [i]);

	}

/* +--+

Outputs the unsigned integer (16 bits) to the current serial port. assumes "Intel" least significant byte first.

*/

	int send_unsigned (unsigned d)

	{

			unsigned char *cp;

			cp = (unsigned char *) &d;

			put_serial_char (*cp); // Low order byte

			put_serial_char (*(cp+1)); // Hi order byte

	}

/* +---+

 Read a character from the current serial port.

	*/

	int get_serial_char ()

	{

 int c

 // read a character from the current serial port and assign it to c

 // If there has been a timeout or some other error, set c to a negative

 // value that indicates the type of error

 return c;

	}

/* +---+

 anticipates an ACK to verify that the link has understood

 the command it has just received. If the character received is not

 ACK, or there has been some serial error (i.e. timeout), return an

 error value, otherwise return OK

	*/

	int get_ acknowledge ()

	{

 int c

 c = get_serial_char();

 if (c == ACK)

 return OK;

 else if (c < 0) // serial error

 return serial_error_code;

 else // did not receive ACK

 return c

	}

/* +--+

Read a series of bytes from the current serial port and store them in

the receive buffer.

	*/

 int fill_buffer (int n)

 {

 int i;

 for (i=0; i<n; i++)

 {

 c = get_serial_char();

 if (c >= 0)

 recieve_buffer[i] = c;

 else

 // there has been an error getting the next character

 return serial_error_code;

 }

 return OK; // we have read in n bytes

 }

/* +--+

Read a series of bytes from the current serial port, perform a CRC

check on the data, and store them in the receive buffer.

	*/

 int fill_crc_buffer (int n) // n includes the CRC bytes

 {

 int i;

 int crc = 0; // initialize the CRC checksum to 0

 for (i=0; i<n; i++)

 {

 c = get_serial_char();

 if (c >= 0)

 {

 recieve_buffer[i] = c; // Store the data

 crc = crc_table [(crc >> 8) ^ c] ^ (crc << 8);

 }

 else

 // there has been an error getting the next character

 return serial_error_code;

 }

 if (crc == 0)

 return OK; // we have read in n bytes and the CRC is OK

 else

 return CRC_ERROR; // The CRC check failed.

 }

Link Types and Revision Levels

	WeatherLink hardware modules can be classified by the station model they are intended for, and by revision level.

	There is one link type for the Monitor, Wizard, and Perception stations. The WeatherLink logs all the sensors for each of these stations, Any sensor or calculated value that the station does not support will be filled with the appropriate Invalid Data value (see below).

	The GroWeather, Energy, and Health stations are substatialy different from each other, both in the sensors supported, and in the types of calculated values. The corresponding Links are therefore also different. The primary difference, from the programmer's viewpoint, is the memory locations of the desired data which can be found in the corresponding memory address table below.

	There are 3 different revision levels of WeatherLink modules. These represent changes and upgrades made over the life of the product.

	The Rev C (and earlier) level is only used for Monitor/Wizard/ Perception Links. This version does not support the use of SR modems for communicating with the PC at distances greater than 50 feet

	The only difference between Monitor Links made at Rev D and Rev C is that the Rev D WeatherLinks support the use of SR modems. The GroWeather, Energy, and Health Links are also manufactured at the Rev D level.

	The Rev E Link implements a slightly different communication protocol between it and the PC to provide greater communication reliability. This consists, primarily, of extra CRC information that must be provided by the PC so that the WeatherLink can verify every command. Also, ALL data returned by the WeatherLink has a CRC code included, not just LOOP, MDMP, and SRD data. This means that the Rev E link is software incompatible with previous versions. The actual commands used to program a Rev E link, however, are the same as the corresponding Rev D link. Two additional commands are added to allow Rev E links to operate with the Rev D communication protocol ("Rev D Emulation Mode").

	In addition, the GroWeather and Energy versions of the Rev E link implements a simple powersavings procedure with the AOM for use with solar powered radio installations.

	At this time only the GroWeather link is available in Rev E versions. Contact Davis' technical support at support@davisnet.com for information on getting Energy or Health versions of the Rev E link if required.

	Most of the included software examples assume you are NOT using a Rev E WeatherLink. Please read the "CRC Checking" (section � REF _Ref408390778 \n �VIII�-� REF _Ref411759316 \n �F�) for information on how to generate the necessary CRC codes. Or, read the description of the "CRC0" command for how to disable CRC command checking.

Command Description

 Commands must be in upper case and terminated with a carriage return (0dh). Do not insert spaces between binary data arguments. If an argument description uses the character '|' then one byte of data is to be formed from the 4 bit values on either side. For example: "bank | n-1" becomes the single byte "0x13" where bank = 1 and n = 4

	Rev E links must also include a two byte CRC code with each command so that the WeatherLink can verify correct transmission. The CRC code is transmitted BEFORE the command. It is possible to program Rev E links to use the Rev D communication protocol, if desired.

If a command is understood, an ASCII 6 (0x06) (ACK) is returned (before any returned data). If the command was not understood, an ASCII 33 (0x21) (!) is returned. Note that this implies that the command passed its CRC check sum if the link is a Rev E. For Rev E links, if the command does not pass its CRC check sum, then an ASCII 24 (0x18) (CAN) is returned.

Some commands return a data stream and a CRC check sum. The generator polynomial for the check sum is x^16 + x^12 + x^5 + 1 (CRC-CCITT backward).

All binary data is transferred in "Intel" format: least significant byte first. In addition, multi-nibble data values on the station are stored least significant nibble first. This does not make a difference when you look at byte sized pieces of memory, since the Link will correctly align the nibbles when sending byte data.

Use the appropriate table in section � REF _Ref408391804 \n �IX� to determine the memory locations and sizes for the data you would like to operate on. If you read data with an odd length, the upper nibble of the last (most significant) byte will be set to 0, not sign extended. If you write data with an odd length, the upper nibble of the last byte will be ignored. Sign extension is taken care of for data in the sensor image and archive image on the link.

The commands "RRD" and "RWR" operate on the link processor memory. These commands execute faster than the "WRD" and "WWR" commands which operate on the station processor memory.

The MDMP command is only available on the GroWeather, Energy, and Health Links.

The CRC0 and CRC1 commands are only available on Rev E links.

DMP

Transfer the contents of the archive memory beginning at address 0 using the XMODEM CRC protocol. This command can be used with any standard communication package (i.e. Procomm). The archive memory is organized as a set of equal sized archive records. The appropriate link memory addresses section contains a description of the size and structure of an archive image, which is the same as the format of the archive records.

i.e.

put_serial_string ("DMP");

put_serial_char (0x0d);

MDMP

 Dumps an image of the current contents of the Station processor memory to the serial port. This typically takes around 6 seconds and is much faster than requesting lots of pieces separately. 256 bytes are sent along with a 2 byte CRC check sum in a similar fashion to the SRD command below. The memory tables below show how this data is organized. See "Using the MDMP command" (section � REF _Ref408390778 \n �VIII�-� REF _Ref411759488 \n �C�) below for how to do the appropriate bit masking and shifting to extract data from the received data.

 NOTE: MDMP uses archive memory 7F00-7FFF to record the memory image from the station before sending it on the computer. This archive memory is not available for normal archive purposes, but the last MDMP can be read by using the SRD command, or the DMP command.

 The MDMP command is only available on the GroWeather, Energy, and Health Links.

put_serial_string ("MDMP");

put_serial_char (0x0d);

LOOP 65536-n

	Send 'n' packets of weather data (sensor image) from the WeatherLink. The first byte (01) signals the start of a new block. This is followed by binary data (15 bytes for the Monitor/Wizard/Perception, 33 bytes for the GroWeather, 27 bytes for the Energy, or 25 bytes for the Health) and a 2 byte CRC check sum. The CRC check sum is calculated on the data only. The "start of block" byte is not included in the CRC calculation. See "CRC Checking" (section � REF _Ref408390778 \n �VIII�-� REF _Ref411759316 \n �F�) below for how to use the CRC information.

Monitor, Wizard, and Perception Sensor Image:

 start of block 1 byte

 inside temperature 2 bytes

 outside temperature 2 bytes

 wind speed 1 byte

 wind direction 2 bytes

 barometer 2 bytes

 inside humidity 1 byte

 outside humidity 1 byte

 total rain 2 bytes

 not used 2 bytes

 CRC checksum 2 bytes

 18 bytes

GroWeather Sensor Image:

 start of block 1 byte

 Archive memory address of

 the next Archive record 2 bytes

 Bar/Power status bits 1 byte See Appendix A

 Soil temperature 2 bytes

 Air temperature 2 bytes

 wind speed 1 byte

 wind direction 2 bytes

 barometer 2 bytes

 Rain Rate 1 byte

 outside humidity 1 byte

 total rain 2 bytes

 Solar Radiation 2 bytes

 Total Wind Run 3 bytes

 Total ET 2 bytes

 Total Degree-Days 3 bytes

 Total Solar Energy 3 bytes

 Alarm Bits and AOM status 3 bytes See Appendices G1 & B

 Leaf Wetness Data and status 1 byte See Appendix G3

 CRC checksum 2 bytes

 36 bytes

Energy Sensor Image:

 start of block 1 byte

 Archive memory address of

 the next Archive record 2 bytes

 Bar/Power status bits 1 byte See Appendix A

 Inside temperature 2 bytes

 Outside temperature 2 bytes

 wind speed 1 byte

 wind direction 2 bytes

 barometer 2 bytes

 Rain Rate 1 byte

 outside humidity 1 byte

 total rain 2 bytes

 Solar Radiation 2 bytes

 Total Wind Run 3 bytes

 Total Solar Energy 3 bytes

 Alarm Bits and AOM status 3 bytes See Appendices E1 & B

 CRC checksum 2 bytes

 30 bytes

Health Sensor Image:

 start of block 1 byte

 Archive memory address of

 the next Archive record 2 bytes

 Bar/Power status bits 1 byte See Appendix A

 Inside temperature 2 bytes

 Outside temperature 2 bytes

 wind speed 1 byte

 wind direction 2 bytes

 barometer 2 bytes

 Rain Rate 1 byte

 total rain 2 bytes

 Solar Radiation 2 bytes

 Inside humidity 1 byte

 outside humidity 1 byte

 UV Intensity 1 bytes

 UV Dose 2 bytes

 Alarm Bits and AOM status 3 bytes See Appendices H1 & B

 CRC checksum 2 bytes

 28 bytes

Example:

	put_serial_string ("LOOP");

	send_unsigned ((unsigned) (65536 - n));

	put_serial_char (0x0d);

 See "� REF _Ref411836493 * MERGEFORMAT �Using the LOOP command�" (section � REF _Ref408390778 \n �VIII�-� REF _Ref411836493 \n �B�) for examples of how to extract data from a Loop image

RRD bank address n-1

Read 'n' nibbles from the link processor memory from 'address' in bank 'bank'. n = 1...8

On Rev E links, the data returned will also include a 2 byte CRC code. See "CRC Checking" (section � REF _Ref408390778 \n �VIII�-� REF _Ref411759316 \n �F�) for how to use the CRC information.

put_serial_string ("RRD");	// Send the command.

put_serial_char (bank);	// bank = 0 or 1.

put_serial_char (address);	// address = 0..FF

put_serial_char (n - 1);	// Get n nibbles..

put_serial_char (0x0d);	// Send CR...

RWR bank | n-1 address data

Write 'n' nibbles of 'data' into the link processor memory beginning at 'address' in bank 'bank.' n = 1..8

put_serial_string("RWR");	// Send the command.

put_serial_char(0x13);	// bank = 1 n = 4

put_serial_char(0x54);	// address = 54h (Last Archive Time)

send_unsigned (0);	// write 0.

put_serial_char(0x0D);	// Send CR...

SRD address n-1

Read 'n' bytes of archive memory beginning at 'address.' Both 'address' and 'n-1' are 16 bit numbers between 0 and 0x7FFF. A two byte CRC checksum is sent at the end of the data stream. See "CRC Checking" (section � REF _Ref408390778 \n �VIII�-� REF _Ref411759316 \n �F�) for how to use the CRC information.

put_serial_string ("SRD");	// Send the command.

send_unsigned (address);	// Start sending from address.

send_unsigned (n-1);	// Send n bytes.

put_serial_char (0x0d);	// Send CR...

SWR address data

Write 'data' (one byte) to 'address' in archive memory. 'address' is a 16 bit number between 0 and 0x7FFF.

put_serial_string ("SWR");	// Send the command.

send_unsigned (address);	// Send two byte address.

put_serial_char (data);	// Send byte of data.

put_serial_char (0x0d);	// Send CR...

WRD n | bank address

 Read 'n' nibbles of data from the station processor memory starting at 'address' in bank 'bank'. For bank 0 use 'bank' = 2 for bank 1 use 'bank' = 4. A maximum of 8 nibbles can be read.

On Rev E links, the data returned will also include a 2 byte CRC code. See "CRC Checking" (section � REF _Ref408390778 \n �VIII�-� REF _Ref411759316 \n �F�) for how to use the CRC information.

put_serial_string ("WRD");	// Send read command.

put_serial_char (0x44);	// read 4 nibbles from bank 1.

put_serial_char (0xB0);	// Read beginning at B0h.

	// (Period Length on GroWeather)

put_serial_char (0x0D);	// Send CR...

WWR n | bank address data

Write 'n' nibbles of data to the station processor memory starting at 'address' in bank 'bank'. For bank 0 use 'bank' = 1 for bank 1 use 'bank' = 3. A maximum of 8 nibbles can be written.

put_serial_string ("WWR");	// Send write command.

put_serial_char (0x31);	// n = 3, writing to bank 0.

put_serial_char (0x34);	// Write to AAh.=

	// Daily ET Alarm Threshold on GroWeather

send_unsigned (0x0FFF);	// Send 4095 or 0FFFh.

put_serial_char (0x0D);	// Send CR...

SAP n

Set the archive interval to 'n' minutes. 'n' is one byte.

put_serial_string ("SAP"); // Send the command.

put_serial_char (n); // Set interval to 'n' minutes.

put_serial_char (0x0D); // Send CR...

SSP 256-n

Set the time interval between samples of the sensor image in the WeatherLink to 'n' seconds. 'n' is one byte. At each sampling instant the sensor image is sampled and variables that are "averaged" are accumulated. The maximum number of samples in an interval is 255.

put_serial_string ("SSP"); // Send the command...

put_serial_char ((unsigned char) (256 - newSamplePeriod));

put_serial_char (0x0D); // Send CR...

STOP

Tell the WeatherLink to stop it's constant updating of weather information from the weather station. The command also disables the archive timer on the WeatherLink. Stopping weather station reads allows the WeatherLink to process commands more quickly.

put_serial_string ("STOP");

put_serial_char (0x0d);

START

Tell the WeatherLink to begin "reading" the weather station and archiving weather information. This command is only needed if you have previously sent a STOP command.

put_serial_string ("START");

put_serial_char (0x0d);

ARC

Force a write to archive memory.

put_serial_string ("ARC");

put_serial_char (0x0d);

IMG

Force a sampling of the sensor image.

put_serial_string ("IMG");

put_serial_char (0x0d);

DBT

Disable the archive timer.

put_serial_string ("DBT");

put_serial_char (0x0d);

EBT

Enable the archive timer.

put_serial_string ("EBT");

put_serial_char (0x0d);

CRC0

Disable CRC command checking for Rev E links. This command will set a Rev E WeatherLink into Rev D emulation mode. This means that CRC check sums are not required (not allowed either!) for commands sent to the WeatherLink. Also, only LOOP, MDMP, and SRD data from the WeatherLink include CRC check sums.

If CRC command checking is enabled when you issue this command, you MUST include the CRC code. CRC command checking is only disabled AFTER the command is received and validated. The CRC code is given below.

CRC0 command is only available on Rev E Links.

Note, the last character of the command is an ASCII zero character.

put_serial_char (44); // CRC code first byte (decimal)

put_serial_char (247); // CRC code second byte (decimal)

put_serial_string ("CRC0"); // The fourth character is a zero

put_serial_char (0x0d);

CRC1

Enable CRC command checking for Rev E links. This command will return a Rev E WeatherLink to normal operation. This means that CRC check sums ARE required for commands sent to the WeatherLink. Also, ALL data from the WeatherLink includes CRC check sums.

If CRC command checking is disabled when you issue this command, you MUST NOT include the CRC code. CRC command checking is only enabled AFTER the command is received.

CRC1 command is only available on Rev E Links.

put_serial_string ("CRC1");

put_serial_char (0x0d);

Command Summary

DMP

 Transfer the contents of the archive memory using the XMODEM CRC protocol.

MDMP

 Dumps an image of Station processor memory to the serial port. This command is only available on the GroWeather, Energy, and Health Links.

LOOP 65536-n

 Send 'n' packets of weather data (sensor image) from the WeatherLink.

RRD bank address n-1

 Read 'n' (1-8) nibbles from the link memory from 'address' in 'bank'.

RWR bank | n-1 address data

 Write 'n' (1-8) nibbles of 'data' into the link memory at 'address' in 'bank.'

SRD address n-1

 Read 'n' bytes of archive memory beginning at 'address.' Both 'address' and 'n-1' are 16 bit numbers.

SWR address data

 Write 'data' (one byte) to 'address' (2 bytes) in archive memory.

WRD n | bank address

 Read 'n' (1-8) nibbles of data from the station memory starting at 'address' For a bank 0 use 'bank' = 2, for a bank 1 use 'bank' = 4.

WWR n | bank address data

 Write 'n' (1-8) nibbles of data to the station memory starting at 'address' For bank 0 use 'bank' = 1, for bank 1 use 'bank' = 3.

SAP n

 Set the archive interval to 'n' minutes. 'n' is one byte.

SSP 256-n

 Set the time interval between samples of the sensor image to 'n' seconds. 'n' is one byte. The maximum number of samples in an interval is 255.

STOP

 Tell the WeatherLink to stop updating the sensor image and archiving.

START

 Tell the WeatherLink to begin updating the sensor image and archiving data. This command is only needed if you have previously sent a stop command.

�ARC

 Force a write to archive memory.

IMG

 Force a sampling of the sensor image.

DBT

 Disable the archive timer.

EBT

 Enable the archive timer.

CRC0

 Disable CRC command checking for Rev E links.

CRC1

 Enable CRC command checking for Rev E links.

�Illustrated Examples

Reading Calibrated Data

 Most of the data values displayed on the Station's LCD have been calibrated. The term "calibrated" here means a user supplied offset has been added to the "raw" number read by the weather station. The data stored in "XxxxDta" memory locations (i.e. Tp1Dta, SpdDta, etc. See Section � REF _Ref408391804 \n �IX�) are uncalibrated. This goes for LOOP data, and archived data as well. Thus, you may have to calibrate the data you read off the station (or link). You should take the time to read the station's user manual to familiarize yourself with some of the Cal number basics.

 There are several approaches to how to implement Cal numbers. 1: Your program takes input from the user and records the Cal numbers in a configuration file on the PC. Optionally the program could set the station's Cal numbers at the same time so they agree. 2. Or, the user could set the Cal number on the station (either manually or with another program) and your program reads the required Cal numbers off the station.

 Always check sensor values for invalid data BEFORE applying calibration numbers. Do not apply a calibration number to an invalid data value. See "� REF _Ref408392967 * MERGEFORMAT �Invalid Data values�" below for more information.

 The rest of this section will explain how to use the second approach. The following Cal Numbers are explained: 1 Temperature, 2 Humidity, 3 Barometer, 4 Rain, 5 Wind Speed, 6 Rain Rate, and 7 UV MED's.

Temperature CAL

 Each of the two temperature sensors has a separate Cal number. Only the current station data and all Link data——including the sensor image (LOOP) and archived data——needs to be calibrated. Hi/Low data on the station and "derived" data (i.e. Dewpoint, Wind chill, and THI) already have the Cal number taken into account. The value at the Cal number location is an offset (in Degrees F*10) to be added to the data. Note: this value is a signed data value.

 Reading Inside Temp on the Monitor (or Wizard or Perception):

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x44); // read 4 nibbles from bank 1.

put_serial_char (0x52); // Read beginning at 52h.

 // (Inside Temp Cal on Monitor)

put_serial_char (0x0D); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

InTempCAL = *((int *) receive_buffer)

 // read the Cal number out of the buffer

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x44); // read 4 nibbles from bank 1.

put_serial_char (0x30); // Read beginning at 30h.

 // (Inside Temp Data on Monitor)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

InTemp = *((int *) receive_buffer)

 // read the Raw Temperature out of the buffer

// Verify that the Raw Temperature is not an invalid data value before

// applying the cal number. See "� REF _Ref408392967 * MERGEFORMAT �Invalid Data values�" below for more

// information.

InTemp = InTemp + InTempCal // InTemp is now Calibrated

 Reading Outside Temp on the Energy Station:

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x34); // read 3 nibbles from bank 1.

put_serial_char (0x45); // Read beginning at 45h.

 // (Outside Temp Cal on Energy)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

 // Note that the upper nibble of the last byte will be set to 0

 // Also, even though the address was odd, the nibbles are aligned so

 // that the addressed nibble is the least significant nibble of the

 // first byte

OutTempCAL = *((int *) receive_buffer)

 // read the Cal number out of the buffer

if(OutTempCAL > 2048) // Check for negative numbers

 {

 OutTempCAL = OutTempCAL - 4096;

 // convert a 3 nibble 2's complement negative

 // number into a "real" negative number

 }

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x34); // read 3 nibbles from bank 1.

put_serial_char (0x36); // Read beginning at 36h.

 // (Outside Temp Data on Energy)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

OutTemp = *((int *) receive_buffer)

 // read the Raw Temperature out of the buffer

if(OutTemp > 2048) // Check for negative numbers

 {

 OutTemp = OutTemp - 4096; // convert a 3 nibble 2's complement negative

 // number into a "real" negative number

 }

// Verify that the Raw Temperature is not an invalid data value before

// applying the cal number. See "� REF _Ref408392967 * MERGEFORMAT �Invalid Data values�" below for more

// information.

OutTemp = OutTemp + OutTempCAL // OutTemp is now Calibrated

Humidity CAL

 Only Outside Humidity on the GroWeather, Energy, Health, and on the Monitor Rev C or later have a CAL number. It consists of either a signed 2-byte number (on the Monitor) or a signed 1-byte number (on the other stations) to be added to the current station data and Link data including the sensor image (LOOP) and archived data. Hi/Low and "Derived" values (dewpoint, THI, etc.) already take the Cal number into account.

 After adding the Cal number to the data, you will need to make sure that the result is in the range 1 to 100. If not, then clip the data at these boundaries.

Reading Outside Hum on the Monitor:

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x44); // read 4 nibbles from bank 1.

put_serial_char (0xDA); // Read beginning at DAh.

 // (Outside Hum Cal on Monitor)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

OutHumCAL = *((int *) receive_buffer)

 // read the Cal number out of the buffer

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x24); // read 2 nibbles from bank 1.

put_serial_char (0x98); // Read beginning at 98h.

 // (Outside Hum Data on Monitor)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(1); // get the returned data (in bytes)

OutHum = *((unsigned char *) receive_buffer)

 // read the Raw Humidity out of the buffer

if (OutHum == 128) // if the raw sensor value is 128, then either the

 return HUM_ERROR_VALUE // hum sensor is not working or not attached.

OutHum = OutHum + OutHumCal

 // OutHum is now Calibrated, but possibly out of range

if (OutHum >100)

 OutHum = 100;

else if (OutHum < 1)

 OutHum = 1; // OutHum has been clipped to the range 1 - 100.

Barometer

 The weather station measures the absolute atmospheric pressure. In order to convert this to a Standard Barometric pressure, the station subtracts a calibration offset value. This is determined by having the user enter the desired Barometric reading (derived from some other source i.e. airport, newspaper etc.). The station stores the difference between the desired reading and the actual reading in the "StnDrd" memory register. This calibration number must be subtracted from the current Station data and Link data including the sensor interface (LOOP) and archived data.

 Note: since at higher elevations the absolute pressure decreases, the barometric pressure is generally larger than the atmospheric pressure and since the calibration number is subtracted from the data, it is generally a negative number. It is 2 bytes long

Reading Barometer on the Monitor (or Perception):

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x44); // read 4 nibbles from bank 1.

put_serial_char (0x2C); // Read beginning at 2Ch.

 // (Barometer Standard on Monitor)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

BarCAL = *((int *) receive_buffer) // read the Cal number out of the buffer

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x44); // read 4 nibbles from bank 1.

put_serial_char (0x00); // Read beginning at 00h.

 // (Barometer Data on Monitor)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

Barometer = *((int *) receive_buffer)

 // read the Raw Barometer out of the buffer

Barometer = Barometer - BarCal // Barometer is now Calibrated

Rain

 Rain data on all stations and links are stored in "unit-less" clicks. The RainCal number tells how many clicks are in an inch of rain. The most common numbers are: 10 for the 0.1" rain collector, 100 for the 0.01" rain collector, and 127 for the 0.2mm rain collector.

Reading Yearly Rain on the Monitor (or Wizard):

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x44); // read 4 nibbles from bank 1.

put_serial_char (0xD6); // Read beginning at D6h.

 // (Rain Cal on Monitor)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

RainCAL = *((int *) receive_buffer) // read the Cal number out of the buffer

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x44); // read 4 nibbles from bank 1.

put_serial_char (0xCE); // Read beginning at CEh.

 // (Yearly Rain Data on Monitor)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

RainClicks = *((int *) receive_buffer)

 // read the Raw Rain out of the buffer

YearRain = (float) RainClicks / (float) RainCal

 // Make sure this is a floating point calculation

 // YearRain is now Calibrated in Inches

 Reading Daily Rain on the GroWeather Station:

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x44); // read 4 nibbles from bank 1.

put_serial_char (0xCF); // Read beginning at CFh.

 // (Rain Cal on GroWeather)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

RainCAL = *((int *) receive_buffer)

 // read the Cal number out of the buffer

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x34); // read 3 nibbles from bank 1.

put_serial_char (0xC9); // Read beginning at C9h.

 // (Daily Rain Data on GroWeather)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

 // Note that the upper nibble of the last byte will be set to 0

 // Also, even though the address was odd, the nibbles are aligned so

 // that the addressed nibble is the least significant nibble of the

 // first byte

RainClicks = *((int *) receive_buffer) // read the Raw Rain out of the buffer

 // Since Rain is unsigned, we do not need to Check for negative numbers

DailyRain = (float) RainClicks / (float) RainCal

 // Make sure this is a floating point calculation

 // YearRain is now Calibrated in Inches

Wind Speed

 While all of the stations have a Wind Speed cal number, there are very few situations where it is useful. Primarily if you do not attach a Davis anemometer, or if you are not measuring wind speed. The formula for Wind Speed in MPH is "SpdDta" * 1600 / "SpdCal". Since, the default Cal number is 1600, you can just read "SpdDta" in MPH directly without any further calculation.

 The Speed Cal only effects the LCD display of the current and Hi wind speed. It is not used in any "Derived" calculations (i.e. Wind Chill, THSWI, or ET).

 Setting the Cal Number to 3600 will cause the display to be in Hz. That is it will show the number of anemometer revolutions per second.

Rain Rate

 Rain Rate is only available on the GroWeather, Energy, and Health stations. There are two different ways that the Rain Rate data is stored. On the Links (both Sensor Image and archived data), the rate is stored in inches per hour times 10. The current station rain cal is used to calculate this value. See Below.

 On the Station, the current rain rate (and the Hi rate on the Health station) is stored as "The number of half-seconds between the last rain click and the previous rain click. Given the information above about the station's rain Cal number, the formula for converting raw rate data is:

Rate(in/hr) = 7200(½ sec/hr) / ("RateDta"(½ sec/clicks)*"RainCal"(clicks/In))

UV MED's

 The UV MED's Cal number is designed to allow the UV MED's displays to be adjusted for different skin types. UV Intensity data is stored in tenths of an Index, but can be displayed in both Index and MED's per Hour. UV Doses are stored as "Standard" MED's and always displayed in MED's. The UV MED's Cal number is a number between 1 and 14 which represents a multiplication factor of 0.1 to 1.4. The "Standard" Cal number is 10, representing a multiplication factor of 1.0.

 The formula for converting UV Index to "Standard" MED's is:

UV_MEDs = (3/7) * UV_Index

 The formula to convert "Standard" MED's to calibrated MED's is:

Caled_MEDs = Standard_MEDs * "UVCal" / 10

Note: Make sure that you perform both of the above conversions using floating point arithmetic!

Using the LOOP command

 The LOOP command is the preferred way to acquire real time updates of weather data. The data sent in a LOOP packet is the data from the Link's Sensor interface. The pseudo-code description of the link processing loop above describes how often this data is updated from the station. The answer to the question "How often is the data updated?" in the FAQ contains some useful approximate timing figures. LOOP data is also CRC checked (See below for how to implement CRC Checking).

 Assuming that you want a virtually continuous stream of loop packets, one approach is to ask for a large number (say 1000) of packets in one LOOP command, another approach is to ask for a few packets (5-10) in one LOOP command and repeat the request when they have arrived. In either case there is the possibility that missed characters or other communication difficulties may cause the receiver to become unsynchronized with the link as to where the data packets begin. If this happens you should first stop the stream of LOOP data by sending another valid command (like a read of Link memory). Then clear your receive buffer and send the LOOP command again.

 Another feature of the LOOP command, only available on the GroWeather, Energy, and Health stations, is the ability to monitor the archiving of data. On these stations, one of the data fields is the "NewPtr" that indicates the SRAM address where the next archive record is to be written. If this number changes during the course of reading LOOP packets, you know that the station has created a new archive record. This feature is used in the "Strip Charts" in the GroWeather, Energy, and Health software to keep the PC database current with the archive memory.

 The following examples show how to extract data from a data buffer filled with LOOP data. See above for a description of fill_crc_buffer() and see below for how CRC checking is done.

 Example of reading a Monitor Sensor Image. (reading a Wizard or a Perception is the same only omitting the fields of non-existing sensors).

put_serial_string ("LOOP");

send_unsigned ((unsigned) (65535)); // request 1 LOOP packet

put_serial_char (0x0d);

get_acknowledge(); // verify that the command was received and got ACK

header = get_serial_char(); // This should be the block header byte

if (header != 1) { error = 1;}

 // If the header byte is not 1 then there is an error

// assuming there is no error ...

CRC_Error = fill_crc_buffer(17); // 15 data bytes + 2 CRC bytes.

 // Header Byte is not included in CRC check

// assuming there is no CRC error, the data is stored in recieve_buffer ...

inside_temperature = *((int *)(receive_buffer+0));

outside_temperature = *((int *)(receive_buffer+2));

wind_speed = *((unsigned char *)(receive_buffer+4));

wind_direction = *((int *)(receive_buffer+5));

barometer = *((int *)(receive_buffer+7));

inside_humidity = *((unsigned char *)(receive_buffer+9));

outside_humidity = *((unsigned char*)(receive_buffer+10));

rain = *((unsigned *)(receive_buffer+11));

 Example of reading a GroWeather sensor image

put_serial_string ("LOOP");

send_unsigned ((unsigned) (65535)); // request 1 LOOP packet

put_serial_char (0x0d);

get_acknowledge(); // verify that the command was received and got ACK

header = get_serial_char(); // This should be the block header byte

if (header != 1) { error = 1;}

 // If the header byte is not 1 then there is an error

// assuming there is no error ...

CRC_Error = fill_crc_buffer(34); // 32 data bytes + 2 CRC bytes.

 // Header Byte is not included in CRC check

// assuming there is no CRC error, the data is stored in receive_buffer ...

New_pointer = *((unsigned int *)(receive_buffer));

bar_power_flag = *((unsigned char *)(receive_buffer+2));

soil_temperature = *((int *)(receive_buffer+3));

air_temperature = *((int *)(receive_buffer+5));

wind_speed = *((unsigned char *)(receive_buffer+7));

wind_dir = *((int *)(receive_buffer+8));

barometer = *((int *)(receive_buffer+10));

rain_rate = *((unsigned char *)(receive_buffer+12));

outside_humidity = *((unsigned char*)(receive_buffer+13));

rain = *((unsigned *)(receive_buffer+14));

solar_rad = *((int *)(receive_buffer+16));

wind_run = *((unsigned char *) (recieve_buffer+18)) + *((unsigned char *) (recieve_buffer+19))*256 + *((unsigned char *) (recieve_buffer+20))*65536

ET = *((unsigned char *) (recieve_buffer+21))

ET_Flags = *((unsigned char *) (recieve_buffer+22))

Deg_Days = *((unsigned char *) (recieve_buffer+23)) + *((unsigned char *) (recieve_buffer+24))*256 + *((unsigned char *) (recieve_buffer+25))*65536

Energy = *((unsigned char *) (recieve_buffer+26)) + *((unsigned char *) (recieve_buffer+27))*256 + *((unsigned char *) (recieve_buffer+28))*65536

Alarm_Flags = *((unsigned char *) (recieve_buffer+29)) + *((unsigned char *) (recieve_buffer+30))*256 + (*((unsigned char *) (recieve_buffer+31)) & 0x0F)*65536

AOM_status = (*((unsigned char *)(recieve_buffer+31)) & 0xF0) >> 4

LeafWetnessData = (*((unsigned char *)(recieve_buffer+32)) & 0xF);

LeafWetnessEnabled = (*((unsigned char *)(recieve_buffer+32)) & 0x40) == 0x40;

 // Check the value of bit 6

Using MDMP command

 While the MDMP command is only available on the GroWeather, Energy, and Health stations, it is very useful any time you want to examine several station memory locations at once. For instance, looking at all the Hi/Lows or all the Alarm thresholds. You could, in principal, use MDMP as an alternative to the LOOP command to provide real time data, but it imposes a greater burden on the Station, Link, and PC processing power and bandwidth. It is therefore not recommend for continuous use.

 There are 2 difficulties that must be addressed when extracting MDMP data. First, locating the desired data in the data buffer. Second, making sure that the number is sign extended if the value is supposed to be a negative number.

 Assuming that the MDMP data is stored in a continuous byte sized buffer starting with byte 0, Bank 0 data from the station will be found in Bytes 0-127. Bank 1 data from the station will be found in Bytes 128-255. Remembering that the addresses in the tables below are in nibbles, even addresses are stored in the Least-Significant-Nibble of their corresponding byte, and odd addresses are in the Most-Significant-Nibble.

 To request and store a memory dump:

put_serial_string ("MDMP"); // Request Memory Dump

put_serial_char (0x0d);

get_acknowledge(); // verify that the command was received and got ACK

CRC_Error = fill_crc_buffer(258); // 256 data bytes + 2 CRC bytes.

 // receive_buffer has memory dump data.

Some examples of reading data out of this buffer:

 Wind speed on the GroWeather is located at address 0x060 = 96. This corresponds to byte 48 in the buffer. Since the data starts on an even address and is only 2 nibbles long and unsigned, byte 48 is the Wind Speed without any further processing.

WindSpeed = receive_buffer(48);

 Daily ET on the GroWeather is located at address 0x0A7 = 167. This corresponds to the upper nibble of byte 83 in the buffer. Since the data value is 3 nibbles long, the whole of byte 84 is also part of this data field. The data is unsigned so we do not have to worry about sign extension.

nibble1 = (receive_buffer[83] & 0xF0) >> 4; // Mask and shift nibble 1

DayET = nibble1 + (receive_buffer[84] * 16); // Add in the upper 2 nibbles

 Hi Air Temp on the GroWeather is located at address 0x145 = 325 (69 in Bank 1). This corresponds to the upper nibble of byte 162 (128 + 34.5). The data field also includes all of byte 163. After extracting the data, we must check for a negative value.

nibble1 = (receive_buffer[162] & 0xF0) >> 4; // Mask and shift nibble 1

HiAirTemp = nibble1 + (receive_buffer[163] * 16);// Add in the upper 2 nibbles

if (HiAirTemp > 2048)// Check the sign bit of a 3-nibble 2's complement number

 HiAirTemp = HiAirTemp - 4096; // If negative, make it so

 And finally, Soil Temp Low Alarm Threshold on the GroWeather is located at address 0x13C = 316 (60 in Bank 1). This corresponds to byte 158. The data also extends into the lower nibble of byte 159. Again the data needs to be sign extended if necessary

nibble3 = (receive_buffer[159] & 0x0F) * 256; // Mask out the Hi nibble

SoilLowAlarm = receive_buffer[158] + nibble3; // add lower byte to nibble3

if (SoilLowAlarm > 2048) // Check the sign bit of a 3-nibble number

 SoilLowAlarm = SoilLowAlarm - 4096; // If negative, make it so

Invalid Data values

 In general there are 2 different ways that numerical data is stored on the weather station: Signed and Unsigned. These two methods use different values to indicate that the sensor is not attached (or not working). Signed data can use either the largest positive or smallest negative number that fits into it's data size. Unsigned data uses the largest value.

 You must keep in mind the size (in nibbles) of the data field you are examine since this will affect the numerical values to be checked for.

 These Data values are also used in Alarm Thresholds to indicate that no threshold has been set and therefore not to test for that particular alarm condition.

 Always check sensor values for invalid data BEFORE applying calibration numbers. Do not apply a calibration number to an invalid data value.

 Rain Rate is a special case dealt with below.

 Data that accumulates over time (i.e. Rain, ET, Degree-Days, Wind Run, Solar Energy, and UV Dose) is unsigned data. The error value is used only for inactive alarm thresholds.

Signed Data Values:

 Temperature: All temperatures, Hi/Lows, Alarm thresholds, and Cal numbers are Signed data. On the Monitor, the Wizard, and the Perception, these values are stored in 4 nibble fields. Therefore the error values are 0x7FFF = 32767 and 0x8000 = -32768.

On the GroWeather, Energy, and Health stations, these values are stored in 3 nibble fields. And the error values are 0x7FF = 2047 and 0x800 = -2048.

 Barometer: The current and stored barometer data is stored in 4 nibble fields on all stations. The barometer alarm is stored in 2 nibbles, and uses the value 0x7F = 127 or 0x80 = -128 for invalid data.

 Wind Direction: On the Monitor, and Wizard stations, the wind direction is stored in a 4 nibble field and uses the values 0x7FFF or 0x8000 to indicate an invalid wind direction.

 On the GroWeather, Energy, and Health stations, wind direction is stored in a 3 nibble field and uses the values 0x7FF or 0x800 to indicate an invalid wind direction.

 This information only applies to the current wind direction on the station, or in the sensor image on the link (i.e. LOOP data packet). The data stored in the archive memory is an unsigned byte with the compass direction of the prevailing wind from 0-15. The value 255 is used to indicate that there was either no wind or no wind direction data during the archive period.

 In addition, the GroWeather, Energy, and Health stations also have 1 nibble fields that record both the current wind direction and the wind direction at the time of the hi wind speed. All 16 values of a 1 nibble number are needed to represent the 16 different compass points. You will need to check the value of the appropriate status bit in order to determine if the data is valid.

 Humidity: Since valid Humidity values only range from 1% to 100%, it does not make much difference whether humidity is considered a signed or unsigned value. An illegal Humidity reading is represented by the value 0x80 which can either be thought of as 128 or -128 depending upon whether the data is signed or unsigned. The weather station treats the data as signed for the purposes of clearing Hi/Low values.

Unsigned Data Values:

 Wind Speed: Except for Rev A Monitors, and Wizards, wind speed data on all stations is 2 nibbles long and unsigned. On the Rev A Monitors and Wizards, the data is signed.

 The wind speed hi alarm threshold on all Monitors and Wizards is a 4 nibble signed number using 0x7FFF or 0x8000 to indicate an invalid alarm.

 On the GroWeather, Energy, and Health stations, the wind speed hi alarm is a 2 nibble unsigned number which uses 0xFF = 255 to indicate an invalid alarm. Note that this means that while the current (and Hi) data can display the value of 255, the alarm can not be set to this value, since that value is used to indicate the absence of a wind speed alarm.

 Solar Rad: Solar rad is a 3 nibble unsigned number that uses 0xFFF = 4095 to indicate invalid data.

 UV Intensity: UV Intensity is stored as a 2 nibble unsigned number. The current value, hi value, and hi alarm use the value 0xFF = 255 to indicate invalid data.

Rain Rate Data

 The rain rate data is stored as a 3 nibble unsigned number. Because of the way that rain rate is measured and calculated, larger data values correspond to smaller rain rates. Setting the hi rain rate to zero, for instance, results in an infinite rain rate that is displayed with dashes. These dashes will not go away until the hi rain rate is cleared. When a rain rate value is cleared, it is set to 0xFFF = 4095, the display will read 0.0 inches per hour. In some cases, the station treats this value as a signed number and uses the value 0x7FF = 2047 to indicate a cleared rain rate.

Calculated Data values

 Here are some formulas and code examples for how to calculate some of the "Derived" data values found on the station:

Wind Chill

 Wind chill represents how cold the temperature feels in the presence of wind. It is based on the current wind speed (calibration is ignored) and the current outside temperature (calibration is used). The following C code shows how this is done. Note that if the temperature is above 91, the wind has no effect on the wind chill.

/* Chill Factor (cf) at 5 MPH intervals */

unsigned char chillTableOne [] =

{

156, 151, 146, 141, 133, 123, 110, 87, 61, 14, 0

};

/* delta cf for interpolation of table one */

unsigned char chillTableTwo [] =

{

0, 16, 16, 16, 25, 33, 41, 74, 82, 152, 0

};

/*

+---+

 Assumes temperature is in F.

 & speed is in Mph

 Returns Chill in F

*/

float ChillCalc (int speed, float t)

{

 int index;

 float cf, chill;

 if (speed > 50) // Max. speed of 50 mph.

 speed = 50;

 index = 10 - speed / 5; // this division is not rounded!

 cf = chillTableOne [index] +

 (chillTableTwo [index] / 16.0) * (speed % 5);

 // '%' is the mod operator that gives the remainder when the first operand is

 // divided by the second operand

 // Only apply chill factor if the temperature is less that 91.4

 if (t < 91.4)

 chill = cf * ((t - 91.4) / 256.0) + t;

 else

 chill = t;

return chill;

}

Dew Point

 The dewpoint is the temperature that dew begins to form. Water will condense on an object that is colder that the dewpoint of the surrounding air. It represents the absolute amount of water in the atmosphere -- a higher dewpoint means there is more water in the air. This value is based on the outside temperature and outside humidity (both calibrated).

/******************

 * DewCalc Computes the dew point based on Relative Hum & Temp

 * rh in % (i.e. 0.0 - 100.0), temp in F

 * Computes dp in C and converts to F if using those units

 ******************/

float DewCalc (float rh, float temp)

{

 // verify that the input data is valid before continuing

 if (rh<1 || rh>100 || temp<-100 || temp>200)

 {

 return NO_DATA; // return with "error" if input is invalid.

 }

 float dp, ews, num, den;

 temp= (5.0/9.0)*(temp-32.0); // convert temp to C

 ews= rh*0.01*exp((17.502*temp)/(240.9+temp));

 // ews is proportional to the vapor pressure

 num= 240.9*(log(ews)); // "log" is really "ln" (i.e. log base e)

 den= 17.5-(log(ews));

 dp= num/den;

 if (tempUnits == FAHRENHEIT) // Convert back to F if required.

 dp= (9.0/5.0)*dp+32;

 return dp;

}

Temperature-Humidity Index

 Temperature-Humidity Index (THI) is a measure of "sultriness", or "how hot does it feel?". Based on a paper by R.G. Steadman, it uses outside temperature and outside humidity (both calibrated). The station determines THI by interpolation from the table in the file thitable.h. This table is indexed by temperature in 1 degree intervals for each row, and humidity in 10 percent intervals for each column.

 Because this measurement is primarily intended for monitoring human health and comfort in hot weather, it only covers temperatures greater than 68 F (20 C). If the temperature is less than 68 F then the station only displays that the THI is "LO". In addition, if the calculated THI is greater than 125 F (51 C) then the station reports a THI of 125 F alternated with a display of "HI". There are status bits on the station to let you know if either of these conditions exist.

THSWI

 Temperature-Humidity-Sun-Wind Index (THSWI) extends THI by adding in the effects of the Sun and the Wind. For a complete discussion, see the paper "The Assessment of Sultriness. Part II: ..." contained in Volume 18 of the Journal of Applied Meteorology.

 If either the Solar sensor, or the anemometer is not attached (or not working) then the corresponding component of THSWI will not be calculated. Wind direction is used to determine if the anemometer is working since there is no other way to distinguish between an absent anemometer and a valid reading of 0 MPH. This means you can not use a Wizard II-S anemometer (speed only, no wind direction) if you want the station to calculate THSWI.

 THSWI has the same temperature limits as THI as described above.

Wind Run

 Wind run measures the total volume of wind that has passed by the anemometer. It is implemented on the station by counting the number of revolutions of the anemometer. Every 1600 revolutions is one mile of wind run. Thus every 160 revolutions is one tenth of a mile of wind run. You can use wind run data from the archive as an average wind speed after taking into account the archive period. The following table shows how to convert wind run data into average wind speed data. There is no advantage to using this technique for archive intervals of 1 or 5 minutes.

 You can also use this table to convert average wind speed data into wind run by dividing the wind speed data by the given factor. The resolution of the resulting wind run data will be the same as the conversion factor.

Conversion factors for Wind Run to Average MPH

Archive	multiply wind	Resolution (0.1 mile of wind run = XX MPH)

interval	run by	MPH

120	0.5	0.05

60	1.0	0.1

30	2.0	0.2

15	4.0	0.4

10	6.0	0.6

5	12.0	1.2

1	60.0	6.0

Degree-Days

 Degree days are calculated by "integrating" the amount by which the current temperature is above (or below) a threshold over time. Here is how you could calculate degree-day values from an existing temperature database.

 First, select the temperature threshold you will use, and whether you are calculating Heating Degree-days (temperature is below the threshold), Cooling Degree-days (temperature is above the threshold), or Growing Degree-days (like Cooling DD with an optional hi temperature limit). Also select the time period of the calculation. This procedure will give the total Degree-days over the whole period.

 Second, Clear out your Degree-day accumulator.

 Third, for each record in your data base in the specified period, calculate the difference between the temperature and the threshold. For Heating degree-days, use threshold - temperature; for Cooling degree-days use, use temperature - threshold; for Growing degree-days, use MIN(temperature, hi_threshold) - low_threshold. Only use these numbers if the value is greater than 0, otherwise use 0.

 Fourth, multiply the value from step 3 by the number of minutes in the archive period and add to the accumulator. Repeat steps 3 and 4 for each record in the data base in the specified period.

 Fifth, after all the data points have been accumulated, divide the result by 1440 (the number of minutes in a day). This is the total accumulated degree-days during the selected period.

 Note that degree-day values calculated by the station console may differ from values calculated from the algorithm given above because the station samples the temperature values on a real time basis instead of using averaged values.

Solar Energy

 Solar energy, measured in Langleys, is Solar radiation integrated over time. One Langley equals 11.622 Watt hours per square meter = 697.32 Watt minutes per square meter.

UV Dose

 UV Dose is UV Intensity, measured in MED's per hour, integrated over time. See above for how to convert UV Index into MED's per hour.

Rain Rate

 Rain Rate data on the station is stored as the number of ½ seconds between rain clicks. See above for how to convert this to inches per hour. If the number of ½ seconds is 0, then the display will dash because the corresponding rate would be infinite. If the number of ½ seconds is greater than 720 = 6 minutes, then the corresponding rate is less that 0.1 inch per hour.

 One consequence of the way that rain rate is calculated is that there can be no rate determination until the second rain click occurs. Further, there will be some delay before any change in the rain rate is displayed, and this delay will be longer when the rate decreases. Any time the station notices that more than 6 seconds have gone by without a rain click, the rate value is cleared to 0 (½ seconds = 0xFFF = 4095). This is checked every 4 seconds, so it might take as long as 10 seconds after the last rain click for the rate value to be cleared.

CRC Checking

 The CRC checking used by the WeatherLink is based on the CRC-CCITT standard. The heart of the method involves a CRC-accumulator that uses the following formula on each successive data byte. After all the data bytes have been "accumulated", there will be a two byte CRC checksum that will get processed in the same manner as the data bytes. If there has been no transmission error, then the final CRC-accumulator value will be 0 (assuming it was set to zero before accumulating data).

 In the following code, "crc" is the crc accumulator (16 bits or 2 bytes), "data" is the data or crc checksum byte to be accumulated, and "crc_table" is the table of CRC values found in the CCITT.h header file. The operator "^" is an exclusive-or (XOR), ">> 8" shifts the data right by one byte (divides by 256), and "<< 8" shifts the data left by one byte (multiplies by 256).

crc = crc_table [(crc >> 8) ^ data] ^ (crc << 8);

	Rev E WeatherLinks also require CRC codes on all commands sent from the PC (unless they have been disabled with the "CRC0" command.). The end of line character (0x0D) is included in the CRC calculation. The following code shows one way to implement this. Basically, the command to be sent is stored in the "command_buffer". A CRC code is calculated on this data and is sent to the WeatherLink. Then the command is sent.

unsigned char command_buffer [32];

int command_len;

unsigned int crc;

// generate the command

command_buffer[0] = 'M';

command_buffer[1] = 'D';

command_buffer[2] = 'M';

command_buffer[3] = 'P';

command_buffer[4] = 0x0d; // an MDMP command

command_len = 5; // 5 characters in the command

// we can not use C string functions since the commands could contain

// null bytes.

// calculate the CRC code

crc = 0; // initialize the crc value

for (j=0; j<command_len; j++) // for each character in the command

 {

 crc = crc_table [(crc >> 8) ^ command_buffer[j]] ^ (crc << 8);

 // accumulate the j'th character into the crc.

 // uses the above formula.

 }

// send the CRC code

send_unsigned(crc);

// send the command

for (j=0; j<command_len; j++)

 {

 put_serial_char(command_buffer[j]);

 }

// We are ready to receive an acknowledge and the requested data.

Reading Hi/Low Times and Dates

 On the Monitor, Wizard, and Perception stations, the times and dates of hi, low, and stored (bar) data takes 7 nibbles and has exactly the same format as the station time and date. The time uses 4 nibbles: the first two contain the hour in BCD and the next two contain the minutes also in BCD. The date is stored in 3 nibbles: the first two contain the day in BCD and the third nibble holds the month in binary.

 This is also the same format used for the "TimeStamp" field in the archive image and archive records on all stations. The first two bytes are the time and the second two bytes are the date.

 On the GroWeather station, the times and dates are stored in 4 nibbles. The first nibble is used to indicate how many days ago the Hi/Low was recorded (0-14). If the event was more than 14 days ago, then the value 15 is stored. The upper 3 nibbles contain the time, expressed as the number of minutes after midnight, in binary.

 On the Energy and Health stations, the date of hi/low events is not recorded. The time is stored in 3 nibbles, expressed as the number of minutes after midnight, in binary.

 In the following examples the function convert_BCD() converts one byte from BCD to binary. (e.g. if you pass in 69 = 0x45, the function will return 45 = 0x2D.) There are many ways to represent the time and date on the PC. These examples will use the following structures:

struct time {

 int hour, minutes;

} hi_low_time;

struct date {

 int day, month;

} hi_low_date, current_date;

Reading the time and date of the high wind speed on the Monitor:

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x42); // read 4 nibbles from bank 0.

put_serial_char (0x64); // Read beginning at 64h.

 // (Time of hi wind speed on Monitor)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

hi_low_time.hour = convert_BCD(receive_buffer[0]); // convert hours

hi_low_time.minutes = convert_BCD(receive_buffer[1]); // convert minutes

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x32); // read 3 nibbles from bank 0.

put_serial_char (0x68); // Read beginning at 68h.

 // (Date of hi wind speed on Monitor)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

hi_low_date.day = convert_BCD(receive_buffer[0]); // convert day

hi_low_date.month = receive_buffer[1] & 0x0F; // extract month

Reading the time and date of high outside temp on the GroWeather

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x44); // read 4 nibbles from bank 1.

put_serial_char (0x54); // Read beginning at 64h.

 // (Time/date of hi outside temp on GroWeather)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

days_ago = recieve_buffer[0] & 0x0F; // Mask out the relative date

minutes = *((unsigned int*) recieve_buffer);

minutes = minutes >> 8; // minutes now contains the time of the hi

time.hour = minutes / 60; // integer division

time.minutes = minutes % 60; // remainder after dividing by 60

if (days_ago < 15) // has the Hi/low expired?

 // calculate the Hi/low date by subtracting days_ago from the current date

 hi_low_date = current_date - days_ago;

else

 { // Mark date invalid since we don't know how log ago the hi low happened

 hi_low_date.day = hi_low_month = 0;

 }

Reading the time of high THI on the Energy

put_serial_string ("WRD"); // Send read command.

put_serial_char (0x32); // read 3 nibbles from bank 0.

put_serial_char (0x9F); // Read beginning at 9Fh.

 // (Time of hi THI on Energy)

put_serial_char (0xd); // Send CR...

get_acknowledge(); // verify that the command was received and got ACK

fill_buffer(2); // get the returned data (in bytes)

minutes = *((unsigned int*) recieve_buffer);

 // minutes now contains the time of the hi

time.hour = minutes / 60; // integer division

time.minutes = minutes % 60; // remainder after dividing by 60

Memory addresses.

NOTES:

 In the tables below, the third hex digit of the address indicates the memory bank (0 or 1) where the data is stored.

 Bit locations are indicated by a memory location name followed by a period and a number from 0-3. for example: "BarSteady Equ BarFlag.0" indicates that the Bar Steady flag is located in bit 0 of the nibble named BarFlag.

 Multi-nibble values are stored least significant nibble first. The addresses listed in the tables below are the addresses of the least significant nibble. Commands like WRD will correctly align nibbles into bytes before transmission to the PC for values that begin on both even and odd addresses.

 The station date is encoded in 3 nibbles on the Monitor, Wizard, and Perception stations and 5 nibbles on the GroWeather, Energy and Health stations. The first 2 nibbles store the day of the month in BCD. The third nibble is a number (1..12) representing the month. On the GroWeather, Energy and Health stations, the last 2 nibbles are the year minus 1900 in binary. For example August 5 1996 is stored as "5 0 8 0 6" in increasing address order. Day = 05, Month = 8, Year = 60 hex = 96 = 1996;

 The station time is encoded in 6 nibbles. The first 2 nibbles store the hour in BCD. The second 2 nibbles store the minutes in BCD. The last 2 nibbles store the seconds in BCD.

 On the Monitor, Wizard, and Perception stations, Hi/Low Times are stored exactly like the station time. Hi/Low Dates use 3 nibbles and record the Day and Month of the Hi/Low event in the same manner as the first 3 nibbles of the station date.

 On the GroWeather, Energy, and Health stations, Hi/Low Time/Dates are stored differently. On the GroWeather they take 4 nibbles and include both time and date information, on the Energy and Health, only the time is recorded. In both storage schemes the time is recorded in 3 nibbles as a binary number giving the number of minutes since midnight. On the GroWeather, 1 nibble, the First, is used to indicate how many days ago the Hi/Low was recorded (0-14). If the event was more than 14 days ago, then the value 15 is stored.

 The TimeStamp field in archive records and in the archive image consists of 4 bytes that identify the time and date of the stored record, or the current time and date on the station. The first byte is the hours (0-23) in BCD, the second is the minutes (0-60) in BCD, the third is the day of the month (0-31) in BCD, and the fourth is the month (1-12) in binary.

Temperatures and Degree-Days are stored in tenths of °F.

Humidity is stored as a percent (1-100).

Pressure is stored in thousandths of an inch.

Wind speeds are stored in miles per hour.

Wind Run is stored as tenths of a mile.

Rain is stored as "clicks" or rain bucket tips.

Rain Rate is stored on the station as 1/2 seconds between clicks, and on the link in Tenths of an inch per hour, calculated from the station's Rain Cal number.

Solar Radiation is stored as Watts per square meter.

Solar energy is stored in tenths of a Langley.

UV Intensity is stored in tenths of a UV Index.

UV Dose is stored in tenths of a "standard" MED

ET is stored in 100'th of an inch.

Leaf Wetness ranges from 0 to 15 with 0 = Dry and 15 = Wet.

THI Stands for Temperature-Humidity Index

THSWI Stands for Temperature-Humidity-Sun-Wind Index

Monitor, Wizard, and Perception Station

Bank 0

Address	Data	Data Size (nibbles)

004D Model: DS 1 ; Weather Station type See Appendix C

005E SpdDta: DS 2 ; Current wind speed.

0060 SpdHi: DS 4 ; Hi wind speed.

0064 SpdHTime: DS 4 ; BCD hour and minutes of hi.

0068 SpdHDate: DS 3 ; BCD day of month + 1 nibble for month

006B SpdAHi: DS 4 ; Wind speed hi alarm threshold

0079 BarFlag: DS 1 ; Indicates the status of the bar trend arrows

 BarSteady Equ BarFlag.0 ; If BarSteady = 1, then Ignore BarRise

 BarRise Equ BarFlag.1 ; and BarFall Bits

 BarFall Equ BarFlag.2

008A DewDta: DS 4 ; Current dew point in tenths F.

008E DewHi: DS 4 ; Hi dew point in tenths F.

0092 DewLo: DS 4 ; Lo dew point in tenths F.

0096 DewHTime: DS 4 ; Time of hi dew point.

009A DewLTime: DS 4 ; Time of lo dew point.

009E DewLDate: DS 3 ; Date of lo dew point.

00A1 DewHDate: DS 3 ; Date of hi dew point.

00A4 DewAHi: DS 4 ; Hi dew point alarm.

00A8 ChlDta: DS 4 ; Current wind chill in tenths F.

00AC ChlLo: DS 4 ; Low wind chill.

00B0 ChlLTime: DS 4 ; Time of low wind chill reading.

00B4 ChlLDate: DS 3 ; Date of low wind chill reading.

00B7 ChlALo: DS 4 ; Low wind chill alarm.

Bank 1

Address	Data	Data Size (nibbles)

0100 BarDta: DS 4 ; Absolute barometric pressure.

011A BarAlm: DS 2 ; Barometric pressure alarm.

012C StnDrd: DS 4 ; Bar Calibration offset.

 ; LCD Display = BarDta - StnDrd

0130 Tp1Dta: DS 4 ; Current inside temperature.

0134 Tp1Hi: DS 4 ; Hi inside temperature.

0138 Tp1Lo: DS 4 ; Low inside temperature.

013C Tp1HTime: DS 4 ; Time of hi inside temperature.

0140 Tp1LTime: DS 4 ; Time of low inside temperature.

0144 Tp1HDate: DS 3 ; Date of hi inside temperature.

0147 Tp1LDate: DS 3 ; Date of lo inside temperature.

014A Tp1AHi: DS 4 ; Hi inside temperature alarm.

014E Tp1ALo: DS 4 ; Low inside temperature alarm.

0152 Tp1Cal: DS 4 ; Inside temperature cal number.

0156 Tp2Dta: DS 4 ; Current outside temperature.

015A Tp2Hi: DS 4 ; Hi outside temperature.

015E Tp2Lo: DS 4 ; Lo outside temperature.

0162 Tp2HTime: DS 4 ; Time of hi outside temperature.

0166 Tp2LTime: DS 4 ; Time of lo outside temperature.

016A Tp2HDate: DS 3 ; Date of hi outside temperature.

016D Tp2LDate: DS 3 ; Date of low outside temperature.

0170 Tp2AHi: DS 4 ; Hi outside temperature alarm.

0174 Tp2ALo: DS 4 ; Low outside temperature alarm.

0178 Tp2Cal: DS 4 ; Outside temperature cal number.

0180 Hm1Dta: DS 2 ; Inside humidity.

0182 Hm1Hi: DS 2 ; Hi inside humidity.

0184 Hm1Lo: DS 2 ; Low inside humidity.

0186 Hm1HTime: DS 4 ; Time of hi inside humidity.

018A Hm1LTime: DS 4 ; Time of low inside humidity.

018E Hm1HDate: DS 3 ; Date of hi inside humidity.

0191 Hm1LDate: DS 3 ; Date of low inside humidity.

0194 Hm1AHi: DS 2 ; Hi inside humidity alarm.

0196 Hm1ALo: DS 2 ; Low inside humidity.

0198 Hm2Dta: DS 2 ; Current outside humidity.

019A Hm2Hi: DS 2 ; Hi outside humidity.

019C Hm2Lo: DS 2 ; Low outside humidity.

019E Hm2HTime: DS 4 ; Time of hi outside humidity.

01A2 Hm2LTime: DS 4 ; Time of low outside humidity.

01A6 Hm2HDate: DS 3 ; Date of hi outside humidity.

01A9 Hm2LDate: DS 3 ; Date of low outside humidity.

01AC Hm2AHi: DS 2 ; Hi outside humidity alarm.

01AE Hm2ALo: DS 2 ; Low outside humidity alarm.

01B4 DirDta: DS 4 ; Wind direction (0...359)

01BE Time: DS 6 ; Time on station. BCD hour min second.

01BE Hour (DS 2) ; BCD Hours (00 - 23)

01C0 Minute (DS 2) ; BCD Minutes

01C2 Second (DS 2) ; BCD Seconds

01C4 TimeAlm: DS 4 ; Station alarm.

01C4 HrAlm (DS 2) ; BCD Time alarm Hours (00 - 23)

01C6 MinAlm (DS 2) ; BCD Time alarm Minutes

01C8 Date: DS 5 ; Station date.

01C8 Day (DS 2) ; BCD Day of the month

01CA Month (DS 1) ; stored in binary 1-12

01CE YRnDta: DS 4 ; Rain clicks recorded this year.

01D2 DRnDta: DS 4 ; Rain clicks recorded since last

 ; clear of daily rain.

01D6 RnCal: DS 4 ; Number of clicks equivalent to 1 inch.

01DA Hm2Cal: DS 4 ; Outside hum cal number.

Monitor, Wizard, and Perception Link

Bank 0

Address	Data	Data Size (nibbles)

004D Model: DS 1 ; Weather Station type See Appendix C

Bank 1

Address	Data	Data Size (nibbles)

0100 NewPtr DS 4 ; Address of next archive entry.

0104 OldPtr DS 4 ; Address of oldest archive entry.

; Sensor image begins here. (11Ch) - (139h)

011C Tin DS 4 ; Inside temperature

0120 Tout DS 4 ; Outside temperature

0124 WSp DS 2 ; Wind speed

0126 WDir DS 4 ; Wind direction

012A Barom DS 4 ; Barometer

012E Hin DS 2 ; Inside humidity

0130 Hout DS 2 ; Outside humidity

0132 Rain DS 4 ; Rain

0136 Unused DS 4 ; Unused bytes sent in the LOOP command

; End of sensor image. (139h) Size = 1Eh = 30 nib = 15 bytes

013A SamplePer DS 2 ; Sample Period = 256 - "Data" seconds

013C ArcPeriod DS 2 ; Archive interval in minutes.

0140 PrevRain DS 4 ; Rain click total at time of last archive.

0148 LastArchiveTime DS 4 ; Time in min. since midnight of last archive.

015E WDirs ds 32 ; Histogram of wind directions.

; Archive Image begins here: (188h)-(1B1h)

0188 ArchiveImage

0188 Barom Ds 4 ; Barometer reading at archive time.

018C Hin Ds 2 ; Inside humidity at archive time.

018E Hout Ds 2 ; Outside humidity at archive time.

0190 Rain Ds 4 ; Rainfall in period.

0194 TinAvg Ds 4 ; Average inside temperature.

0198 TOutAvg Ds 4 ; Average outside temperature.

019C WspAvg Ds 2 ; Average wind speed in period.

019E Wdir Ds 2 ; Dominant wind direction in archive period. (0-15)

01A0 THiOut Ds 4 ; Hi Tout in period.

01A4 Gust Ds 2 ; Hi wind speed in period.

01A6 TimeStamp Ds 8 ; Archive entry time and date.

01AE TLowOut Ds 4 ; Low Tout in period.

;End of Archive Image (1DF) Size = 2Ah = 42 Nibbles = 21 Bytes

GroWeather Station

Bank 0

Address	Data	Data Size (nibbles)

000E LWReg DS 1 ; Leaf Wetness Enabled Register

 LWEnabled Equ LWEnabled.2 ; 0 = Soil Temp, 1 = Leaf Wetness

0036 AlarmReg: DS 5 ; Bit flags for each alarm. See Appendix G1

003B AOMStat: DS 1 ; AOM Load Status report. See Appendix B

003D DirFlags: DS 1

 BadDirF Equ DirFlags.2 ; Is current Dir Bad? 1=bad, 0=good

 BadHiDir Equ DirFlags.3 ; Is Hi Dir Bad? 1=bad,0=good

004D Model: DS 1 ; Weather Station type. See Appendix C

0049 HiTHIFlags: DS 1 ; Hi THI status Flags

 HiTHILowFl Equ HiTHIFlags.2 ; Hi THI Value is >= 125

 HiTHIHiFl Equ HiTHIFlags.3 ; Hi THI Value is below range

005F THIFlags: DS 1 ; THI status flags

 THILowFl Equ THIFlags.2 ; 1 = Air Temp < 68 degrees

 THIHiFl Equ THIFlags.3 ; 1 = THI >= 125 degrees

0060 SpdDta: DS 2 ; # of pulses in 2.25 seconds, equiv. to MPH

0062 SpdHi: DS 2 ; High Wind speed (MPH)

0064 SpdHTime: DS 4 ; Time of High Wind Speed

0068 SpdAHi: DS 2 ; High Wind Speed alarm (MPH)

006A SpdCal: DS 4 ; Wind Speed Calibration Number

0075 HiDir: DS 1 ; Compass Rose Direction of Hi wind speed

 ; 0=N, 1=NNE, 2=NE, etc.

 ; See Appendix F

007A BarFlag: DS 1 ; Indicates the status of the bar trend arrows

 BarSteady Equ BarFlag.0 ; If BarSteady = 1, then Ignore BarRise

 BarRise Equ BarFlag.1 ; and BarFall Bits

 BarFall Equ BarFlag.2

007B PwrFlags: DS 1

 BattLow Equ PwrFlags.2 ; 1 = the Battery Voltage is low

 PowLow Equ PwrFlags.3 ; 1 = the primary power voltage is low

008A DewDta: DS 3 ; Current Dewpoint Data (Degrees F*10)

008D DewAHi: DS 1 ; Dew point alarm stored here.

008E ChlDta: DS 3 ; Current Wind Chill Data (Degrees F*10)

0091 ChlLo: DS 3 ; Low Wind Chill

0094 ChlLTime: DS 4 ; Time/Date of Low Wind Chill

0098 ChlALo: DS 3 ; Wind Chill Low Alarm Threshold

009E RunDta: DS 4 ; Daily Wind Run Data (Miles *10)

00A2 RunTDta: DS 5 ; Total (Period) Wind Run Data(Miles *10)

00A7 ETDDta: DS 3 ; Daily ET (Inches *100)

00AA ETDAl: DS 3 ; Daily ET Alarm Threshold (Inches *100)

00AD ETTDta: DS 4 ; Total ET (Inches *100)

00B1 ETTAl: DS 4 ; Total ET Alarm Threshold (Inches *100)

Bank 1

Address	Data	Data Size (nibbles)

0100 BarDta: DS 4 ; Current Barometer Data (Inches *1000)

0118 BarSto: DS 4 ; Stored Bar Data

011C BarStoT: DS 4 ; Stored Bar Time and Date

0120 StnDrd: DS 4 ; Bar Calibration Offset

 ; LCD Display = BarDta - StnDrd

0124 BarAlm: DS 2 ; Bar Trend Alarm Threshold

0130 Tp1Dta: DS 3 ; Current Soil Temperature Data (Degrees F*10)

0133 Tp1Hi: DS 3 ; Hi Soil Temp Data

0136 Tp1Lo: DS 3 ; Low Soil Temp Data

0139 Tp1AHi: DS 3 ; Soil Temp Hi Alarm Threshold

013C Tp1ALo: DS 3 ; Soil Temp Low Alarm Threshold

013F Tp1Cal: DS 3 ; Soil Temp Cal Number

0142 Tp2Dta: DS 3 ; Current Air Temp Data(Degrees F*10)

0145 Tp2Hi: DS 3 ; Hi Air Temp Data

0148 Tp2Lo: DS 3 ; Low Air Temp Data

014B Tp2AHi: DS 3 ; Air Temp Hi Alarm Threshold

014E Tp2ALo: DS 3 ; Air Temp Low Alarm Threshold

0151 Tp2Cal: DS 3 ; Air Temp Cal Number

0154 Tp2HTime: DS 4 ; Time/Date of Hi Air Temp

0158 Tp2LTime: DS 4 ; Time/Date of Low Air Temp

015C DDDDta: DS 3 ; Daily Degree-Day Data (Degrees F*10)

015F DDTDta: DS 5 ; Total Degree-Day Data (Degrees F*10)

0164 DDBase: DS 3 ; Degree-Day Base temp (Degrees F*10)

0167 DDTAHi: DS 5 ; Degree-Day Total Alarm Threshold

016C DDMax: DS 3 ; Degree-Day Max temp (Degrees F*10)

0173 Hm2Dta: DS 2 ; Current Outside Humidity Data (0-100%)

0175 Hm2Hi: DS 2 ; Hi Outside Hum Data

0177 Hm2Lo: DS 2 ; Low Outside Hum Data

0179 Hm2HTime: DS 4 ; Time/Date of Hi Outside Hum

017D Hm2LTime: DS 4 ; Time/Date of Low Outside Hum

0181 Hm2AHi: DS 2 ; Outside Hum Hi Alarm Threshold

0183 Hm2ALo: DS 2 ; Outside Hum Low Alarm Threshold

0185 Hm2Cal: DS 2 ; Outside Hum Cal Number

018B DirDta: DS 3 ; Current Wind Direction Data (0-360)

0194 Time: DS 6 ; Current Station Time(HH:MM:SS)

0194 Hour (DS 2) ; BCD Hours (00 - 23)

0196 Minute (DS 2) ; BCD Minutes

0198 Second (DS 2) ; BCD Seconds

019A TimeAlm: DS 4 ; Station Time Alarm (HH:MM)

019A HrAlm (DS 2) ; BCD Time alarm Hours (00 - 23)

019C MinAlm (DS 2) ; BCD Time alarm Minutes

019E Date: DS 5 ; Current Station Date (DD:M:YY)

019E Day (DS 2) ; BCD Day of the month

01A0 Month (DS 1) ; stored in binary 1-12

01A1 Year (DS 2) ; Year = 1900+binary data

01A3 THIDta: DS 3 ; Current THI Data (Degrees F*10)

01A6 THIHi: DS 3 ; Hi THI Data

01A9 THIHTime: DS 4 ; Time/Date of Hi THI

01AD THIAHi: DS 3 ; THI Hi Alarm Threshold

01B0 PerLen: DS 4 ; Length of Period that tracks Total values

 ; Low order nibble is in 1/16'ths of a day (90 min)

01B1 PerDay (DS 3) ; Upper 3 nibbles are the number of Whole days

 ; in the period

01B4 ACTime: DS 4 ; AutoClear Time (Same format as Time) (HH:MM)

01B8 SradDta: DS 3 ; Current Solar Radiation Data

 ; (Watts per square Meter)

01BB SEngDDta: DS 4 ; Daily Solar Energy Data (Langleys *10)

01BF SEngTDta: DS 6 ; Total Solar Energy Data (Langleys *10)

01C5 YRnDta: DS 4 ; Total Rain Data

01C9 DRnDta: DS 3 ; Daily Rain Data

01CC DRnAHi: DS 3 ; Daily Rain Alarm Threshold

01CF RnCal: DS 4 ; Rain Cal Number (Number of clicks in 1 inch)

01D3 RateDta: DS 3 ; Current Rain Rate in 1/2 seconds per click

01D6 RateHi: DS 3 ; Hi Rain Rate Data

01D9 RateHTime: DS 4 ; Time/Data of Hi Rain Rate

01DD PowVolt: DS 1 ; Voltage of the primary power source

 ; See Appendix D

01DE LeafDta: DS 1 ; Current Leaf Wetness Data

GroWeather Link

; Memory Bank 0 AT 0h

Address	Data	Data Size (nibbles)

004F Model: DS 1 ; Weather Station type See Appendix C

; ET data input registers. used to calculate hourly data for ET calculation.

0080 ETTemp ds 5 ; ET Temperature accumulator

0085 ETSun ds 5 ; ET Solar Rad accumulator

008A ETHum ds 4 ; ET Humidity accumulator

008E ETWind ds 4 ; ET Wind Speed accumulator

0092 ETTSamp ds 2 ; Count of ET Temp samples

0094 ETSSamp ds 2 ; Count of ET Sun samples

0096 ETHSamp ds 2 ; Count of ET Hum samples

0098 ETWSamp ds 2 ; Count of ET Wind samples

009A ETSampCnt ds 2 ; Count of ET Sample readings

009E ETDay ds 3 ; Shadow of Station Daily ET Data

00A1 ETTot100 ds 5 ; Shadow of Station Total ET Data

; Memory Bank 1 AT 100h

Address	Data	Data Size (nibbles)

0106 OldPtr ds 4 ; Points to oldest entry in archive memory.

; Sensor image begins here. (10Ah) - (14Fh)

; Each Field is in full bytes for ease of PC Loop mode interpretation

010A NewPtr ds 4 ; Points to next free archive memory location.

010E SIStatus ds 2 ; Bar trend and Power flags See Appendix A

0110 GTSoil ds 4 ; Current Soil temperature.

0114 GTAir ds 4 ; Current Air temperature.

0118 GWSp ds 2 ; Current wind speed.

011A GWDir ds 4 ; Current Wind direction in degrees.

011E GBarom ds 4 ; Current Barometer reading.

0122 GRate ds 2 ; Current Rain Rate

0124 GHout ds 2 ; Current outside humidity.

0126 GTRain ds 4 ; Total rainfall.

012A GSun ds 4 ; Current Solar Rad in W/m^2

012E GTRun ds 6 ; Total Wind Run

0134 TET ds 4 ; Total ET

0138 GTDegDay ds 6 ; Total Degree-Days

013E GTEnrgy ds 6 ; Total Solar Energy

0144 Galarms ds 6 ; Current Alarm Bits See Appendix G1 and B

0146 LWData ds 2 ; Current Leaf Wetness Data and Status

 ; See Appendix G3

; End of sensor image. (14Ah) Size = 42h = 66nib = 33bytes

0150 SamplePer ds 2 ; Sample Period = 256 - "Data" seconds

0152 ArcPeriod ds 2 ; Archive period in minutes.

0154 LastArchiveTime ds 4 ; Time of last archive in min. since midnight.

; Accumulation registers.

0158 WspAccum ds 4 ; Sum of wind speed samples in archive per.

015C TinAccum ds 5 ; Sum of Soil temp samples in archive per.

0161 ToutAccum ds 5 ; Sum of out temp samples in archive per.

0166 SunAccum ds 5 ; Sum of Solar Rad samples in archive per.

0178 Samples ds 2 ; Number of samples taken in period.

017C LnkRnCal ds 4 ; Link copy of the Station's Rain Cal

0180 WDirs ds 32 ; Histogram of wind directions.

; Archive Image begins here: (1A0h)-(1DFh)

01A0 ArchiveImage

01A0 Barom Ds 4 ; Barometer reading at archive time.

01A4 Hout Ds 2 ; Outside humidity at archive time.

01A6 WspAvg Ds 2 ; Average wind speed in period.

01A8 Gust Ds 2 ; Hi wind speed in period.

01AA Wdir Ds 2 ; Dominant wind direction in archive period. (0-15)

01AC Rain Ds 4 ; Rainfall in period.

01B0 TinAvg Ds 4 ; Average Soil temperature.

 ; If Leaf Wetness is enabled, holds LW data instead

01B4 TOutAvg Ds 4 ; Average outside temperature.

01B8 TimeStamp Ds 8 ; Archive entry time and date.

01C0 THiOut Ds 4 ; Hi Tout in period.

01C4 TLowOut Ds 4 ; Low Tout in period.

01C8 DegDays Ds 4 ; Degree-Days in period

01CC ETArc Ds 2 ; ET in period

01CE ETStat ds 2 ; bitmapped ET Calc. flags See Appendix G2

01D0 Wind Run Ds 4 ; Wind run in period

01D4 Sun Ds 4 ; Average Solar Radiation in period

01D8 Energy Ds 4 ; Solar energy in period

01DC HiRate Ds 2 ; Hi Rain Rate in period

01DE GArcPowV DS 2 ; Station Power voltage at archive time

 ; See Appendix D

;End of Archive Image (1DF) Size = 40h = 64 Nibbles = 32 Bytes

; previous values registers: These registers contain the value

; of accumulated values at the beginning of the archive period

01E0 PrevRun ds 6

01E6 PrevDD ds 6

01EC PrevEnrg ds 6

01F2 PrevRain ds 4

01FF WindThresh ds 1 ; Wind Direction statistics are made when the

 ; wind speed is greater than WindThresh.

Energy Station

Bank 0

Address	Data	Data Size (nibbles)

0036 AlarmReg: DS 5 ; Bit flags for each alarm. See Appendix G1

003B AOMStat: DS 1 ; AOM Load Status report. See Appendix B

003D DirFlags: DS 1

 BadDirF Equ DirFlags.2 ; Is current Dir Bad? 1=bad,0=good

 BadHiDir Equ DirFlags.3 ; Is Hi Dir Bad 1=bad,0=good

0049 HiTHIFlags: DS 1 ; Hi THI Flags

 HiTHILowFl Equ HiTHIFlags.2 ; Hi THI Value is >= 125

 HiTHIHiFl Equ HiTHIFlags.3 ; Hi THI Value is below range

004D Model: DS 1 ; Weather Station type See Appendix C

005F THIFlags: DS 1 ; THI Flags

 THILowFl Equ THIFlags.2 ; 1 = Air Temp < 68 degrees

 THIHiFl Equ THIFlags.3 ; 1 = THI >= 125 degrees

0060 SpdDta: DS 2 ; # of pulses in 2.25 seconds =. to MPH

0062 SpdHi: DS 2 ; High Wind speed (MPH)

0064 SpdHTime: DS 3 ; Time of High Wind Speed

0067 HiDir: DS 1 ; Compass Rose Direction of Hi wind speed

 ; 0=N, 1=NNE, 2=NE, etc.

 ; See Appendix F

0068 SpdAHi: DS 2 ; High Wind Speed alarm (MPH)

006A SpdCal: DS 4 ; Wind Speed Calibration Number

007A BarFlag: DS 1 ; Indicates the status of the bar trend arrows

 BarSteady Equ BarFlag.0 ; If BarSteady = 1, then Ignore BarRise

 BarRise Equ BarFlag.1 ; and BarFall Bits

 BarFall Equ BarFlag.2

007B PwrFlags: DS 1

 BattLow Equ PwrFlags.2 ; 1 = the Battery Voltage is low

 PowLow Equ PwrFlags.3 ; 1 = the primary power voltage is low

008A DewDta: DS 3 ; Current Dewpoint Data (Degrees F*10)

008D ChlDta: DS 3 ; Current Wind Chill Data (Degrees F*10)

0090 ChlLo: DS 3 ; Low Wind Chill Data

0093 ChlLTime: DS 3 ; Time of Low Wind Chill

0096 ChlALo: DS 3 ; Wind Chill Low Alarm Threshold

0099 THIDta: DS 3 ; Current THI Data (Degrees F*10)

009C THIHi: DS 3 ; Hi THI Data

009F THIHTime: DS 3 ; Time of Hi THI

00A2 THIAHi: DS 3 ; THI Hi Alarm Threshold

00A5 RunDta: DS 4 ; Daily Wind Run Data (Miles *10)

00A9 RunTDta: DS 5 ; Total (Period) Wind Run Data (Miles *10)

00B2 DirDta: DS 3 ; Current Wind Direction Data (0-360)

00B5 DewAHi: DS 1 ; Dew point alarm stored here

Bank 1

Address	Data	Data Size (nibbles)

0100 BarDta: DS 4 ; Current Barometer Data (Inches *1000)

0118 StnDrd: DS 4 ; Bar Calibration Offset

 ; LCD Display = BarDta - StnDrd

011C BarAlm: DS 2 ; Bar Trend Alarm Threshold

0124 Tp1Dta: DS 3 ; Current Inside Temp. Data (Degrees F*10)

0127 Tp1Hi: DS 3 ; Hi Inside Temperature Data

012A Tp1Lo: DS 3 ; Low Inside Temperature Data

012D Tp1HTime: DS 3 ; Time of Hi Inside Temperature Data

0130 Tp1LTime: DS 3 ; Time of Low Inside Temperature Data

0133 Tp1Cal: DS 3 ; Inside Temperature Cal Number

0136 Tp2Dta: DS 3 ; Current Outside Temp. Data (Degrees F*10)

0139 Tp2Hi: DS 3 ; Hi Outside Temperature Data

013C Tp2Lo: DS 3 ; Low Outside Temperature Data

013F Tp2HTime: DS 3 ; Time of Hi Outside Temperature Data

0142 Tp2LTime: DS 3 ; Time of Low Outside Temperature Data

0145 Tp2Cal: DS 3 ; Outside Temperature Cal Number

0148 Tp2AHi: DS 3 ; Outside Temperature Hi Alarm Threshold

014B Tp2ALo: DS 3 ; Outside Temperature Low Alarm Threshold

0151 HtDDDDta: DS 3 ; Heating Degree-Day Daily (Degrees F*10)

0154 HtDDTDta: DS 5 ; Heating Degree-Day Total (Degrees F*10)

015C ChDDDDta: DS 3 ; Wind Chill Degree-Day Daily (Degs F*10)

015F ChDDTDta: DS 5 ; Wind Chill Degree-Day Total (Degs F*10)

0164 HtDDBase: DS 3 ; Heating/Wind Chill Degree-Day Base temp

 ;(Degrees F*10)

016A CoDDDDta: DS 3 ; Cooling Degree-Day Daily (Degrees F*10)

016D CoDDTDta: DS 5 ; Cooling Degree-Day Total (Degrees F*10)

0175 THDDDDta: DS 3 ; THI Degree-Day Daily (Degrees F*10)

0178 THDDTDta: DS 5 ; THI Degree-Day Total (Degrees F*10)

017D CoDDBase: DS 3 ; Cooling/THI Degree-Day Base temp

 ; (Degrees F*10)

0184 Hm2Dta: DS 2 ; Current Outside Humidity Data (0-100%)

0186 Hm2Hi: DS 2 ; Hi Outside Hum Data

0188 Hm2Lo: DS 2 ; Low Outside Hum Data

018A Hm2HTime: DS 3 ; Time of Hi Outside Hum Data

018D Hm2LTime: DS 3 ; Time of Low Outside Hum Data

0190 Hm2AHi: DS 2 ; Outside Hum Hi Alarm Threshold

0192 Hm2ALo: DS 2 ; Outside Hum Low Alarm Threshold

0194 Hm2Cal: DS 2 ; Outside Hum Cal Number

019C Time: DS 6 ; Current Station Time (HH:MM:SS)

019C Hour (DS 2) ; BCD Hours (00 - 23)

019E Minute (DS 2) ; BCD Minutes

01A0 Second (DS 2) ; BCD Seconds

01A2 TimeAlm: DS 4 ; Station Time Alarm (HH:MM)

01A2 HrAlm (DS 2) ; BCD Time Alarm Hours (00 - 23)

01A4 MinAlm (DS 2) ; BCD Time Alarm Minutes

01A6 PerLen: DS 4 ; Length of Period that tracks Total values

 ; Low order nibble is in 1/16'ths of a day (90 min)

01A7 PerDay (DS 3) ; Upper 3 nibbles are the number of Whole days

 ; in the period.

01AA ACTime: DS 4 ; AutoClear Time (Same format as Time) (HH:MM)

01AE Date: DS 5 ; Current Station Date (DD:M:YY)

01AE Day (DS 2) ; BCD Day of the month

01B0 Month (DS 1) ; stored in binary 1-12

01B1 Year (DS 2) ; Year = 1900+binary data

01B3 SRadDta: DS 3 ; Solar Radiation(Watts per square Meter)

01B6 SEngDDta: DS 4 ; Daily Solar Energy (Langleys *10)

01BA SEngTDta: DS 6 ; Total Solar Energy (Langleys *10)

01C0 YRnDta: DS 4 ; Total Rain Data

01C4 DRnDta: DS 3 ; Daily Rain Data

01C7 DRnAHi: DS 3 ; Daily Rain Alarm Threshold

01CA RnCal: DS 4 ; Rain Cal Number (Number of clicks in 1 inch)

01D1 RateDta: DS 3 ; Current Rain Rate in 1/2 seconds per click

01D4 RateHi: DS 3 ; Hi Rain Rate Data

01D7 RateHTime: DS 3 ; Time of Hi Rain Rate

01DD PowVolt: DS 1 ; Voltage code of the primary power source

 ; See Appendix D

Energy Link

Bank 0

Address	Data	Data Size (nibbles)

004F Model: DS 1 ; Weather Station type See Appendix C

0080 PrevChDD ds 6 ; previous Wind Chill Degree-Days Total

0086 PrevCoDD ds 6 ; previous Cooling Tot Degree-Days Total

008C PrevTHDD ds 6 ; previous THI Degree-Days Total

Bank 1

Address	Data	Data Size (nibbles)

0106 OldPtr ds 4 ; Points to oldest entry in archive memory.

; Sensor image begins here. (10Ah) - (14Fh)

; Each Field is in full bytes for ease of PC Loop mode interpretation

010A NewPtr ds 4 ; Points to next free archive memory location.

010E SIStatus ds 2 ; Bar trend and Power flags See Appendix A

0110 TIn ds 4 ; Current Inside temperature.

0114 TAir ds 4 ; Current Air temperature.

0118 WSp ds 2 ; Current wind speed.

011A WDir ds 4 ; Wind direction in degrees.

011E Barom ds 4 ; Current Barometer reading.

0122 Rate ds 2 ; Current Rain Rate

0124 Hout ds 2 ; Current outside humidity.

0126 TRain ds 4 ; Total rain.

012A Sun ds 4 ; Current Solar Rad in W/m^2

012E TRun ds 6 ; Total Wind Run

0134 TEnrgy ds 6 ; Total Solar Energy

013A Alarms ds 6 ; Current Alarm Bits See Appendix E1 & B

; End of sensor image. (13Fh) Size = 36h = 54 nibbles = 27 bytes

0150 SamplePer ds 2 ; Sample Period = 256 - "Data" seconds

0152 ArcPeriod ds 2 ; Archive period in minutes.

0154 LastArchiveTime ds 4 ; Time of last archive in min. since midnight

; Accumulation registers.

0158 WspAccum ds 4 ; Sum of wind speed samples in archive per.

015C TinAccum ds 5 ; Sum of Soil temp samples in archive per.

0161 ToutAccum ds 5 ; Sum of out temp samples in archive per.

0166 SunAccum ds 5 ; Sum of Solar Rad samples in archive per.

0178 Samples ds 2 ; Number of samples taken in period.

017C LnkRnCal ds 4 ; Link copy of the Station's Rain Cal

0180 WDirs ds 32 ; Histogram of wind directions.

; Archive Image begins here: (1A0h)-(1DFh)

01A0 ArchiveImage

01A0 Barom Ds 4 ; Barometer reading at archive time.

01A4 Hout Ds 2 ; Outside humidity at archive time.

01A6 WspAvg Ds 2 ; Average wind speed in period.

01A8 Gust Ds 2 ; Hi wind speed in period.

01AA Wdir Ds 2 ; Dominant wind direction in archive period. (0-15)

01AC Rain Ds 4 ; Rainfall in period.

01B0 TinAvg Ds 4 ; Average inside temperature.

01B4 TOutAvg Ds 4 ; Average outside temperature.

01B8 Time Ds 4 ; Archive entry time in BCD (HH:MM).

01BC Date Ds 4 ; Archive entry date in BCD (MM:DD)

01C0 THiOut Ds 4 ; Hi Tout in period.

01C4 TLowOut Ds 4 ; Low Tout in period.

01C8 HtDegDays Ds 2 ; Heating Degree-Days in period

01CA ChDegDays Ds 2 ; Wind Chill Degree-Days in period

01CC CoDegDays Ds 2 ; Cooling Degree-Days in period

01CE THDegDays Ds 2 ; THI Degree-Days in period

01D0 Wind Run Ds 4 ; Wind run in period

01D4 Sun Ds 4 ; Average Solar Radiation in period

01D8 Energy Ds 4 ; Solar energy in period

01DC HiRate Ds 2 ; Hi Rain Rate in period

01DE PowerVolt Ds 2 ; Station Power Voltage at archive time

 ; See Appendix D

;End of Archive Image (1DF). Size = 40h = 64 Nibbles = 32 Bytes

; previous values registers

01E0 PrevRun ds 6 ; Previous Total Wind Run

01E6 PrevHtDD ds 6 ; Previous Heating DD

01EC PrevEnrg ds 6 ; Previous Total Solar Energy

01F2 PrevRain ds 4 ; Used to archive Previous Rain amount.

01FF WindThresh ds 1 ; Wind Direction statistics are made when the

 ; wind speed is greater than WindThresh.

Health Station

Bank 0

Address	Data	Data Size (nibbles)

000A BarFlag: DS 1 ; Indicates the status of the bar trend arrows

 BarSteady Equ BarFlag.0 ; If BarSteady = 1, then Ignore BarRise

 BarRise Equ BarFlag.1 ; and BarFall Bits

 BarFall Equ BarFlag.2

000B PwrFlags: DS 1

 BattLow Equ PwrFlags.2 ; 1 = the Battery Voltage is low

 PowLow Equ PwrFlags.3 ; 1 = the primary power voltage is low

000D OTHIRange: DS 1 ; Range bits for Outside THI

 OTHILowFl Equ OTHIRange.0 ; 1 = Outside Temp < 68 degrees

 OTHIHiFl Equ OTHIRange.1 ; 1 = THI >= 125 degrees

 HiOTHILowFl Equ OTHIRange.2 ; 1 = Hi THI Value is below range

 HiOTHIHiFl Equ OTHIRange.3 ; 1 = Hi THI Value is >= 125

000E THSWIRange: DS 1 ; Range bits for Outside THSWI

 THSWILoFl Equ THSWIRange.0 ; 1 = Outside Temp < 68 degrees

 THSWIHiFl Equ THSWIRange.1 ; 1 = THSWI >= 125 degrees

 HiTHSWILoFl Equ THSWIRange.2 ; 1 = Hi THSWI Value is below range

 HiTHSWIHiFl Equ THSWIRange.3 ; 1 = Hi THSWI Value is >= 125

000F ITHIRange: DS 1 ; Range bits for Inside THI

 ITHILowFl Equ ITHIRange.0 ; 1 = Inside Temp < 68 degrees

 ITHIHiFl Equ ITHIRange.1 ; 1 = THI >= 125 degrees

 HiITHILowFl Equ ITHIRange.2 ; 1 = Hi THI Value is >= 125

 HiITHIHiFl Equ ITHIRange.3 ; 1 = Hi THI Value is below range

0037 LatCode: DS 1 ; Code for the current Latitude zone

 ; See Appendix E

0038 AlarmReg: DS 5 ; Bit flags for each alarm See Appendix H1

003D AOMStat: DS 1 ; AOM Load Status report See Appendix B

003E DirFlags: DS 1

 BadDirF Equ DirFlags.2 ; Is current Dir Bad? 1=bad,0=good

 BadHiDir Equ DirFlags.3 ; Is Hi Dir Bad 1=bad,0=good

004D Model: DS 1 ; Weather Station type See Appendix C

0060 SpdDta: DS 2 ; # of pulses in 2.25 seconds = MPH

0062 SpdHi: DS 2 ; High Wind speed (MPH)

0064 SpdHTime: DS 3 ; Time of High Wind Speed

0067 HiDir: DS 1 ; Compass Rose Direction of Hi wind speed

 ; 0=N, 1=NNE, 2=NE, etc.

 ; See Appendix F

0068 SpdAHi: DS 2 ; High Wind Speed alarm (MPH)

006A SpdCal: DS 4 ; Wind Speed Calibration Number

008A DewDta: DS 3 ; Current Dewpoint Data (Degrees F*10)

008D DewAHi: DS 1 ; Dewpoint Alarm is stored here

008E ChlDta: DS 3 ; Current Wind Chill Data (Degrees F*10)

0091 ChlLo: DS 3 ; Low Wind Chill

0094 ChlLTime: DS 3 ; Time of Low Wind Chill

0097 ChlALo: DS 3 ; Wind Chill Low Alarm Threshold

009A ITHIDta: DS 3 ; Current Inside THI Data (Degrees F*10)

009D ITHIHi: DS 3 ; Hi Inside THI

00A0 ITHIHTime: DS 3 ; Time of Hi Inside THI

00A3 ITHIAHi: DS 3 ; Inside THI Hi Alarm Threshold

00AA DirDta: DS 3 ; Current Wind Direction Data (0-360)

00AD SRadDta: DS 3 ; Current Solar Radiation Data

 ; (Watts per square Meter)

00B0 SRadHDta: DS 3 ; Hi Solar Radiation

00B3 SRadHTim: DS 3 ; Time of Hi Solar Rad

Bank 1

Address	Data	Data Size (nibbles)

0100 BarDta: DS 4 ; Current Barometer Data (Inches *1000)

0118 StnDrd: DS 4 ; Bar Calibration Offset

 ; LCD Display = BarDta - StnDrd

011C BarAlm: DS 2 ; Bar Trend Alarm Threshold

0124 Tp1Dta: DS 3 ; Current Inside Temperature Data

0127 Tp1Hi: DS 3 ; Hi Inside Temperature

012A Tp1Lo: DS 3 ; Low Inside Temperature

012D Tp1HTime: DS 3 ; Time of Hi Inside Temp

0130 Tp1LTime: DS 3 ; Time of Low Inside Temp

0133 Tp1AHi: DS 3 ; Inside Temp Hi Alarm Threshold

0136 Tp1ALo: DS 3 ; Inside Temp Low Alarm Threshold

0139 Tp1Cal: DS 3 ; Inside Temp Cal Number

013C Tp2Dta: DS 3 ; Current outside Temp Data(Degrees F*10)

013F Tp2Hi: DS 3 ; Hi Outside Temp

0142 Tp2Lo: DS 3 ; Low Outside Temp

0145 Tp2HTime: DS 3 ; Time of Hi Outside Temp

0148 Tp2LTime: DS 3 ; Time of Low Outside Temp

014B Tp2AHi: DS 3 ; Outside Temp Hi Alarm Threshold

014E Tp2ALo: DS 3 ; Outside Temp Low Alarm Threshold

0151 Tp2Cal: DS 3 ; Outside Temp Cal Number

0154 OTHIDta: DS 3 ; Current Outside THI Data (Degrees F*10)

0157 OTHIHi: DS 3 ; Hi Outside THI

015A OTHIHTime: DS 3 ; Time of Hi Outside THI

015D OTHIAHi: DS 3 ; Outside THI Hi Alarm Threshold

0160 THSWDta: DS 3 ; Current Outside THSWI Data (Degrees F*10)

0163 THSWHi: DS 3 ; Hi THSWI

0166 THSWHTime: DS 3 ; Time of Hi THSWI

0169 THSWAHi: DS 3 ; THSWI Hi Alarm Threshold

0170 Hm1Dta: DS 2 ; Current Inside Humidity Data (0-100%)

0172 Hm1Hi: DS 2 ; Hi Inside Hum Data

0174 Hm1Lo: DS 2 ; Low Inside Hum Data

0176 Hm1HTime: DS 3 ; Time of Hi Inside Hum

0179 Hm1LTime: DS 3 ; Time of Low Inside Hum

017C Hm1AHi: DS 2 ; Inside Hum Hi Alarm Threshold

017E Hm1ALo: DS 2 ; Inside Hum Low Alarm Threshold

0180 Hm2Dta: DS 2 ; Current Outside Humidity Data (0-100%)

0182 Hm2Hi: DS 2 ; Hi Outside Hum Data

0184 Hm2Lo: DS 2 ; Low Outside Hum Data

0186 Hm2HTime: DS 3 ; Time of Hi Outside Hum

0189 Hm2LTime: DS 3 ; Time of Low Outside Hum

018C Hm2AHi: DS 2 ; Outside Hum Hi Alarm Threshold

018E Hm2ALo: DS 2 ; Outside Hum Low Alarm Threshold

0190 Hm2Cal: DS 2 ; Outside Hum Calibration Number

0198 Time: DS 6 ; Current Station Time (HH:MM:SS)

0198 Hour (DS 2) ; BCD Hour (00 - 23)

019A Minute (DS 2) ; BCD Minutes

019C Second (DS 2) ; BCD Seconds

019E TimeAlm: DS 4 ; Station Time Alarm (HH:MM)

019E HrAlm (DS 2) ; BCD Hour (00 - 23)

01A0 MinAlm (DS 2) ; BCD Minutes

01A2 PerLen: DS 4 ; Length of Period that tracks Total values

 ; Low order nibble is in 1/16'ths of a day

01A3 PerDay (DS 3) ; Upper 3 nibbles are the number of Whole days

 ; in the period

01A6 Date: DS 5 ; Current Station Date (DD:M:YY)

01A6 Day (DS 2) ; BCD Day of the month

01A8 Month (DS 1) ; stored in binary 1-12

01A9 Year (DS 2) ; Year = 1900 + binary

01AB ACTime: DS 4 ; AutoClear Time (Same format at Time) (HH:MM)

01AF YRnDta: DS 4 ; Total Rain Data

01B3 DRnDta: DS 3 ; Daily Rain Data

01B6 DRnAHi: DS 3 ; Daily Rain Alarm Threshold

01B9 RnCal: DS 4 ; Rain Cal Number (Number of clicks in 1 inch)

01C0 RateDta: DS 3 ; Rain Rate in 1/2 seconds per click

01C3 RateHi: DS 3 ; Hi Rain Rate Data

01C6 RateHTime: DS 3 ; Time of Hi Rain Rate

01C9 UVIdxDta: DS 2 ; Current UV Intensity Data (Index*10)

01CB UVIdxHDta: DS 2 ; Hi UV Intensity

01CD UVIdxHTim: DS 3 ; Time of Hi UV Intensity

01D0 UVIdxHAlm: DS 2 ; UV Intensity Hi Alarm Threshold

01D2 UVTDose: DS 4 ; Total UV Dose

01D6 UVDDose: DS 3 ; Daily UV Dose

01D9 UVDHAlm: DS 3 ; Daily UV Dose Hi Alarm

01DC UVCal: DS 2 ; MED's Cal number (x10)

Health Link

Bank 0

Address	Data	Data Size (nibbles)

004F Model: DS 1 ; Weather Station type See Appendix C

Bank 1

Address	Data	Data Size (nibbles)

0106 OldPtr ds 4 ; Points to oldest entry in archive memory.

; Sensor image begins here. (10Ah) - (14Fh)

; Each Field is in full bytes for ease of PC Loop mode interpretation

010A NewPtr ds 4 ; Points to next free archive memory location.

010E SIStatus ds 2 ; Bar trend and Power flags See Appendix A

0110 TIn ds 4 ; Current Inside temperature.

0114 TAir ds 4 ; Current Air temperature.

0118 WSp ds 2 ; Current wind speed.

011A WDir ds 4 ; Wind direction in degrees.

011E Barom ds 4 ; Current Barometer reading.

0122 Rate ds 2 ; Current Rain Rate

0124 TRain ds 4 ; Total rainfall.

0128 Sun ds 4 ; Current Solar Rad in W/m^2

012C HIn ds 2 ; Current inside humidity.

012E Hout ds 2 ; Current outside humidity.

0130 UVIdx ds 2 ; current UV Intensity

0132 UVDose ds 4 ; Total UV Dose

0136 Alarms ds 6 ; Current Alarm Bits

; End of sensor image. (13Bh) Size = 32h = 50 nib = 25 bytes

0150 SamplePer ds 2 ; Sample Period = 256 - "Data" seconds

0152 ArcPeriod ds 2 ; Archive period in minutes.

0154 LastArchiveTime ds 4 ; Time of last archive in minutes since midnight

; Accumulation registers.

0158 WspAccum ds 4 ; Sum of wind speed samples in archive per.

015C TinAccum ds 5 ; Sum of Soil temp samples in archive per.

0161 ToutAccum ds 5 ; Sum of out temp samples in archive per.

0166 SunAccum ds 5 ; Sum of Solar Rad samples in archive per.

016B UVAccum ds 5 ; Sum of UV Rate samples in archive per.

0178 Samples ds 2 ; Number of samples taken in period.

017C LnkRnCal ds 4 ; Link copy of the Station's Rain Cal

0180 WDirs ds 32 ; Histogram of wind directions.

; Archive Image begins here: (1A0h)-(1DFh)

01A0 ArchiveImage

01A0 Barom Ds 4 ; Barometer reading at archive time.

01A4 WspAvg Ds 2 ; Average wind speed in period.

01A6 Gust Ds 2 ; Hi wind speed in period.

01A8 Wdir Ds 2 ; Dominant wind direction in archive period. (0-15)

01AA HiRate Ds 2 ; Hi Rain Rate in period

01AC Rain Ds 4 ; Rainfall in period.

01B0 TinAvg Ds 4 ; Average inside temperature.

01B4 TOutAvg Ds 4 ; Average outside temperature.

01B8 Time Ds 8 ; Archive entry time and date.

01C0 THiOut Ds 4 ; Hi Tout in period.

01C4 TLowOut Ds 4 ; Low Tout in period.

01C8 HIn Ds 2 ; Inside humidity at archive time.

01CA Hout Ds 2 ; Outside humidity at archive time.

01CC UVIndex Ds 2 ; Average UV Intensity

01CE HHiIdx ds 2 ; Hi UV Intensity in period

01D0 UVDose Ds 4 ; UV Dosage in period

01D4 Sun Ds 4 ; Average Solar Radiation in period

01D8 HiSun Ds 4 ; High Solar Rad in period

;End of Archive Image (1DB). Size = 3Ch = 60 Nibbles = 30 Bytes

; Accumulation previous values registers

01E0 PrevDose ds 4 Used to archive Previous UV Dose amount.

01F2 PrevRain ; ds 4 Used to archive Previous Rain amount.

01FF WindThresh ; ds 1 0-7 Mph for wind direction calculations.

� DATE \l �2/17/98� � TIME �5:19 PM�		� PAGE �50�

