Database File formats for Davis Instruments Software packages

This file contains the information about the format of the database files for the current Davis Instruments software packages: PCLink 3.01, GroWeatherLink 1.0, Energy WeatherLink 1.0, and Health WeatherLink 1.0. This information is taken from the readme files included with the software.

PC Link 3.01 Data File Format

Data file names.

Each PCLink data file contains data for one month. Data file names have the following format: YYYY-MM.EXT where YYYY represents the year (1995 or 2025, for example) and MM represents the month (01 = January, ... 12 = December) that the data file contains data for. The file extension is derived from the first 3 letters/digits of the station directory.

Data file format

The data file consists of a header block, and a list of data records. The header block contains information about the size of the record list and indices for locating the records for each day.

// a header_block is written to the beginning

// of each monthly data file to locate the

// beginning of each day's data

#define MAX_DAYS_IN_MONTH (31)

struct header_block

{

 char idCode[16]; // must be "WDAT1.0\0\0\0\0\0\0\0\01\0"

		 // Last 2 bytes contain the file version # (1.0)

		 (NOT pclink version # !) ^^^^

		 // in binary

 int num_days; // in month

 long tot_recs; // in file

 index_records Days[MAX_DAYS_IN_MONTH];

 // array of index records for each day in month

};

// an index_record holds the index info for one day.

struct index_records

{

 int num_recs; // number of records in this day

 long Index; // of first record for this day

};

// After the header block, The file consists of a list of weatherData

// records with index numbers starting from 0.

struct weatherData

{

 int packedTime; // minuts since midnight (0-1440)

 int hiOutsideTemperature; // in 1/10'ths of a degree F

 int lowOutsideTemperature; // in 1/10'ths of a degree F

 int insideTemperature; // in 1/10'ths of a degree F

 int outsideTemperature; // in 1/10'ths of a degree F

 int barometer; // in 1/1000'ths of an inch Hg

 unsigned char insideHumidity; // in percent (0-100) unsigned char

 outsideHumidity; // in percent (0-100)

 int DewPoint; // in 1/10'ths of a degree F

 int rain; // encoded rain clicks, see below

 unsigned char windSpeed; // in miles per hour

 unsigned char windGust; // in miles per hour

 int WindChill; // in 1/10'ths of a degree F

 unsigned char windDirection; // encoded wind direction, see below

 unsigned char archiveInterval;// in minutes

};

Data Types

 char's and unsigned char's are one byte (8 bits) long.

 int's are 2 bytes (16 bits) long.

 long's are 4 bytes (32 bits) long.

 multi-byte data field are stored in Intel format, least significant byte first.

 header_block is 208 bytes long.

 index_record is 6 bytes long. weatherData is 24 bytes long.

Index consistency

Each day's data occupies a contiguous segment of the data record list, from Index to Index + num_recs-1 of the appropriate index_record entry. All index numbers (both day indices and record indices) start at 0. The Index number for a given day should be the same as the sum of the num_recs numbers of all the days in the database file that precede the given day. Days at the end of the datafile without data must have their Index number in the index_record array set to the total number of records in the database if you intend to use PCLink to append data to the file. The data within each day is assumed to be in chronological order, and will be plotted in the order they appear in the data base.

Weather Data formats

TEMPERATURE

Data is stored as an integer in 1/10ths of a degree Fahrenheit. You need to divide the stored value by 10 to get the actual value.

BAROMETER

Data is stored as an integer in 1/1000ths of an inch of mercury. You need to divide the stored value by 1000 to get the actual value.

WIND SPEED

Data is stored as an integer in miles per hour.

WIND DIRECTION

 Data is stored as an encoded direction. 0 = N, 1 = NNE, 2 = NE, ..., 14 = NW, 15 = NNE. If there was no wind during the archive interval, the value 255 is used.

RAIN

Data is stored as an encoded click count. The lower 3 nibbles (12 bits) hold the number of clicks recorded by the station during the archive interval. The upper nibble (4 bits) indicate the size of the rain collector used.

 0 = .1 inches

 1 = .01 inches

 2 = .2 millimeters

 3 = 1.0 millimeters

 4 = custom rain increment in inches

 5 = custom rain increment in millimeters

You need to multiply the click count by the appropriate scale factor to obtain the actual value. The custom increments use the increment set in the Setup/Station dialog, and stored in the station.cfg file, to scale to a non-standard collector size.

INVALID DATA

You can mark any temperature or barometer data point as invalid by storing the number -32768 in the database. You can mark humidity data as invalid by storing the number 128 into a humidity field. You can mark wind direction data as invalid by storing the number 255.

PCLink 3.01 DATABASE ORGANIZATION ON THE DISK

Station Directory

When you create a new station the software creates a directory in the \PCLINK3 directory for that station. The software uses the first eight characters of the station name (not including any spaces and punctuation) for the directory name. In order to create a separate directory for each station, you must make sure that the first eight characters (excluding spaces) in any station's name is unique. The software will notify you if a station name conflicts with an existing station.

	Note: If you use automatic download and/or automatic clear, the

	 station's log file (LOG.TXT) is saved in the station's

	 directory as well.

The name of the directory will not change if you subsequently change the station name. You may only change the directory name from DOS. Be aware, however, that if you change your database name, you MUST change the file extension for all of your database files in that directory. Make sure that the file extension for the database file matches the first three letters or numbers in the directory name (ignore any punctuation). For example, if you change your directory name to \ST-HOME, change all of your file extensions to .STH.

Station Configuration File

When you add a station, the software creates a station configuration file (called "station.cfg") in the station directory. Each station has its own discrete setup file which saves the following program settings for the appropriate station.

	- Station Settings: Station model, accessories, rain collector

			 increment, and automatic download time.

	- Serial Port Settings: COM port, IRQ number, baud rate, modem,

				modem string, phone number, and rotary dial

				setting.

	- Units of Measure: Units of measure, date format.

	- Printer: Selected printer and parallel port setting.

	- Plot Settings: Gridlines for all axes, point types, and colors.

	- Clear: Functions selected to be cleared.

	- Auto Clear: Functions selected to be cleared, automatic clear

		 time.

	- Archive Interval: This is actually stored in the Weatherlink

			 itself, though it is a station-specific setting.

	- Calibration Numbers: For inside and outside temperature, outside

			 humidity, barometric pressure, and rainfall.

			 The calibration number for barometric

			 pressure is automatically set when you set

			 your barometric pressure.

	- Backup and Restore: The drive to which files are backed up and

			 the drive from which they are restored.

In order to recognize a station's database files, the station configuration file must be present in the same directory. Whenever you backup, the software automatically copies the station configuration file to the backup disk. If you copy database files (to share or transfer data, for example) make sure you copy the station configuration file with them.

Database Files

The software stores downloaded data in monthly files. Whenever you download, the software saves database files into the active station's directory. The file name which the software applies to database files indicates the year and month of the data. The three character file extension which follows the period indicates the directory in which these database file belong (that is, the station from which they were downloaded). You must make sure that the file extension for the database files matches the first three letters or numbers in the directory name (ignore any punctuation). For example, the database file for April,1994 from a directory called \HOME (and a station called Home) would be named 1994-04.HOM.

Completely filled database files (that is, containing every possible record for the month) saving data stored at the 30 minute archive interval will occupy 35K of disk space. The file size changes in a linear fashion depending on the archive interval. For example, a completely filled file containing data stored at an interval of 1 minute will occupy approximately 1.05 MB of disk space while the same file containing data stored at an interval of 2 hours will occupy approximately 9K.

You cannot combine database files. For example, if you download half of your April data to one directory and the other half to another directory, you cannot combine the two database files into a single file containing all of your April data. Take extreme care when downloading to make sure the correct station is the active station.

	Note: If you do not clear your archive memory, you may be able to

	 download the data into the correct file at a later date.

GroWeatherLink 1.0 Database Structure

The data for each month is stored in a separate binary file. The name of each monthly file has the form YYYY-MM.EXT (ie. 1996-02.STA). The beginning of each file has a header which keeps track of where in the file a new day begins and how many records are in the file. The "C" code for the database structure is included below. After the header comes the records. The record structure is defined by the WeatherRecord class.

/*

 Data is stored in monthly files. Each file has the following header.

*/

struct DayIndex

{

 int recordsInDay;

 long startPos;

};

/*

 Header for each monthly file.

*/

class HeaderBlock

{

 public:

 char idCode [16];

 int daysInMonth;

 long totalRecords;

 DayIndex dayIndex [31];

};

class WeatherRecord

{

 public :

 char day;

 int packedTime;

 int airTemp;

 int highAirTemp;

 int lowAirTemp;

 int soilTemp;

 int barometer;

 float rain; // actual rain amount, not # of rain clicks

 int et; // Station et.

 float pcEt; // Et calculated on computer. -1000 is out.

 int degreeDays;

 int solarRad;

 int solarEnergy;

 byte rainRate;

 byte windSpeed;

 byte highWindSpeed;

 byte windDirection;

 int windChill;

 int windRun;

 int dewPoint;

 int tempHumIndex;

 byte humidity;

 byte archiveInterval;

 int bitFlags; // Used to indicate a note exists.

 byte primaryPower; // Voltage of primary power.

 byte leafWetness; // 255 is leaf not installed.

};

Energy WeatherLink 1.0 Database Structure

The data for each month is stored in a separate binary file. The name of each monthly file has the form YYYY-MM.EXT (ie. 1996-02.STA). The beginning of each file has a header which keeps track of where in the file a new day begins and how many records are in the file. The "C" code for the database structure is included below. After the header comes the records. The record structure is defined by the WeatherRecord class.

/*

 Data is stored in monthly files. Each file has the following header.

*/

struct DayIndex

{

 int recordsInDay;

 long startPos;

};

/*

 Header for each monthly file.

*/

class HeaderBlock

{

 public:

 char idCode [16];

 int daysInMonth;

 long totalRecords;

 DayIndex dayIndex [31];

};

class WeatherRecord

{

 public :

 char day;

 int packedTime;

 int airTemp;

 int highAirTemp;

 int lowAirTemp;

 int insideTemp;

 int barometer;

 float rain; // actual rain amount, not # of rain clicks

 int et; // Maybe later we will calc. ET here.

 int heatingDD;

 int coolingDD;

 int chillDD;

 int thiDD;

 int solarRad;

 int solarEnergy;

 byte rainRate;

 byte windSpeed;

 byte highWindSpeed;

 byte windDirection;

 int windChill;

 int windRun;

 int dewPoint;

 int tempHumIndex;

 byte outsideHum;

 byte archiveInterval;

 int bitFlags; // Used to indicate a note exists.

 byte primaryPower; // Voltage of primary power.

};

Health WeatherLink 1.0 Database Structure

The data for each month is stored in a separate binary file. The name of each monthly file has the form YYYY-MM.EXT (ie. 1996-02.STA). The beginning of each file has a header which keeps track of where in the file a new day begins and how many records are in the file. The "C" code for the database structure is included below. After the header comes the records. The record structure is defined by the WeatherRecord class.

/*

 Data is stored in monthly files. Each file has the following header.

*/

struct DayIndex

{

 int recordsInDay;

 long startPos;

};

/*

 Header for each monthly file.

*/

class HeaderBlock

{

 public:

 char idCode [16];

 int daysInMonth;

 long totalRecords;

 DayIndex dayIndex [31];

};

class WeatherRecord

{

 public :

 char day;

 int packedTime;

 int airTemp;

 int highAirTemp;

 int lowAirTemp;

 int insideTemp;

 int barometer;

 float rain; // actual rain amount, not # of rain clicks

 int et; // Maybe later we will calc. ET here.

 int solarRad;

 int highSolarRad;

 byte rainRate;

 byte windSpeed;

 byte highWindSpeed;

 byte windDirection;

 int windChill;

 int windRun;

 int dewPoint;

 int insideThi;

 int outsideThi;

 int thswIndex;

 byte outsideHum;

 byte insideHum;

 byte uvIndex;

 byte highUvIndex;

 int uvDose;

 byte archiveInterval;

 byte bitFlags; // Used to indicate a note exists.

};

